论文标题

卷积神经网络的正交旋转电流注入的磁性隧道连接

Orthogonal Spin Current Injected Magnetic Tunnel Junction for Convolutional Neural Networks

论文作者

Vadde, Venkatesh, Muralidharan, Bhaskaran, Sharma, Abhishek

论文摘要

我们建议,可以设计一个自旋效应驱动的磁性隧道接线装置,以在注射正交旋转电流时可以连续变化。使用此概念,我们开发了一个混合设备电路模拟平台,以设计一个实现卷积神经网络多个功能的网络。在原子级,我们使用Keldys非平衡绿色的功能技术,该技术与随机Landau-Lifshitz-gilbert-Slonczewski方程式自动耦合,而随机Landau-lifshitz-lifshitz-slonczewski方程又与HSPICE电路模拟器耦合。我们演示了提出的网络的同时功能,以评估整流的线性单元和最大功能。我们提出了针对自由铁磁体的热稳定性因子的设计网络的详细功率和误差分析。我们的结果表明,在拟议的网络中存在非平凡的电力误差权权衡,该网络可以基于具有可靠输出的不稳定的免费免费铁磁铁,实现了节能网络设计。拟议的Relu电路的静电功率为$0.56μw$,而在最糟糕的情况下,具有不稳定的Free Ferromagnet($δ= 15 $)的9个输入的九输入线性线性单位最大通用网络($δ= 15 $)为$ 3.4PJ $。我们还通过分析消失的扭矩梯度点来合理化所提出的设备的磁化稳定性。

We propose that a spin Hall effect driven magnetic tunnel junction device can be engineered to provide a continuous change in the resistance across it when injected with orthogonal spin currents. Using this concept, we develop a hybrid device-circuit simulation platform to design a network that realizes multiple functionalities of a convolutional neural network. At the atomistic level, we use the Keldysh non-equilibrium Green's function technique that is coupled self-consistently with the stochastic Landau-Lifshitz-Gilbert-Slonczewski equations, which in turn is coupled with the HSPICE circuit simulator. We demonstrate the simultaneous functionality of the proposed network to evaluate the rectified linear unit and max-pooling functionalities. We present a detailed power and error analysis of the designed network against the thermal stability factor of the free ferromagnets. Our results show that there exists a non-trivial power-error trade-off in the proposed network, which enables an energy-efficient network design based on unstable free ferromagnets with reliable outputs. The static power for the proposed ReLU circuit is $0.56μW$ and whereas the energy cost of a nine-input rectified linear unit-max-pooling network with an unstable free ferromagnet($Δ=15$) is $3.4pJ$ in the worst-case scenario. We also rationalize the magnetization stability of the proposed device by analyzing the vanishing torque gradient points.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源