论文标题
随机递归DAG和Cooper-Frieze随机网络的考古学
Archaeology of random recursive dags and Cooper-Frieze random networks
论文作者
论文摘要
我们研究在大型增长网络中找到根顶点的问题。我们证明,可以构造大小的置信集,而与网络中包含root顶点的顶点数量无关,而root顶点在各种随机网络模型中具有很高的可能性。这些模型包括均匀的随机递归DAG和统一的Cooper-Frieze随机图。
We study the problem of finding the root vertex in large growing networks. We prove that it is possible to construct confidence sets of size independent of the number of vertices in the network that contain the root vertex with high probability in various models of random networks. The models include uniform random recursive dags and uniform Cooper-Frieze random graphs.