论文标题

随机舍入的气候变化模型在降低的浮点精度下

Climate Change Modelling at Reduced Float Precision with Stochastic Rounding

论文作者

Kimpson, Tom, Paxton, E. Adam, Chantry, Matthew, Palmer, Tim

论文摘要

现在,降低的精度浮点算术在短时间内通常会在数值天气预测中部署。但是,这些降低的精度技术在更长的时间尺度气候模拟中的适用性(尤其是那些试图描述动态,变化气候变化的人)的适用性尚不清楚。我们通过部署一个被称为快速的全球大气,粗分辨率模型来研究这个问题,以模拟不断变化的气候系统,但要增加$ \ text {co} _2 $浓度,在100年的时间范围内。尽管双重精度通常是气候建模的操作标准,但我们发现降低的精度解决方案(Float32,Float16)足够准确。舍入有限的精确度随机漂浮,而不是使用更常见的``圆头化最新的”技术了,尤其是改善了降低的精度解决方案的性能。在100年以上,相对于双重精度解决方案的全球平均平均表面温度(MBE)在全球平均表面温度(降水)中相对于双重精度解决方案是$+2 \ 2 \ 2 \ times $+2^{-4} $ k($ -4} $ k($ -8} $ -8;单个精度和$ -3.5 \ times 10^{ - 2} $ k($ - 1 \ times 10^{ - 2} $ mm/6hr)的精度为一半,而随机舍入的一半精度误差则减少到+1.8 $ \ +1.8 $ \ times 10^{ - 2} $ K($ -8在100年后出现的气候分布,相对于双精度解决方案的全球表面温度的预期价值差异为$ \ \ leq 5 \ times 10^{ - 3} $ k,对于降水量$ 8 \ times 10^{ - 4} $ mm/6h,当在数值上与一半精确地集成在一起的圆周循环时,还可以通过数值整合。讨论。

Reduced precision floating point arithmetic is now routinely deployed in numerical weather forecasting over short timescales. However the applicability of these reduced precision techniques to longer timescale climate simulations - especially those which seek to describe a dynamical, changing climate - remains unclear. We investigate this question by deploying a global atmospheric, coarse resolution model known as SPEEDY to simulate a changing climate system subject to increased $\text{CO}_2$ concentrations, over a 100 year timescale. Whilst double precision is typically the operational standard for climate modelling, we find that reduced precision solutions (Float32, Float16) are sufficiently accurate. Rounding the finite precision floats stochastically, rather than using the more common ``round-to-nearest" technique, notably improves the performance of the reduced precision solutions. Over 100 years the mean bias error (MBE) in the global mean surface temperature (precipitation) relative to the double precision solution is $+2 \times 10^{-4}$K ($-8 \times 10^{-5}$ mm/6hr) at single precision and $-3.5\times 10^{-2}$ K($-1 \times 10^{-2}$ mm/6hr) at half precision, whilst the inclusion of stochastic rounding reduced the half precision error to +1.8 $\times 10^{-2}$ K ($-8 \times10^{-4}$ mm/6hr). By examining the resultant climatic distributions that arise after 100 years, the difference in the expected value of the global surface temperature, relative to the double precision solution is $\leq 5 \times 10^{-3}$ K and for precipitation $8 \times 10^{-4}$ mm/6h when numerically integrating at half precision with stochastic rounding. Areas of the model which notably improve due to the inclusion of stochastic over deterministic rounding are also explored and discussed. [abridged]

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源