论文标题
具有学习形状控制的深层变形3D漫画
Deep Deformable 3D Caricatures with Learned Shape Control
论文作者
论文摘要
3D漫画是对人脸的夸张的3D描述。本文的目的是对紧凑的参数空间中的3D漫画的变化进行建模,以便我们可以为处理3D漫画变形的有用的数据驱动工具包。为了实现目标,我们提出了一个基于MLP的框架,用于构建可变形的表面模型,该模型采用潜在代码并产生3D表面。在框架中,警笛MLP建模一个函数,该功能在固定模板表面上占据3D位置,并返回输入位置的3D位移向量。我们通过学习采用潜在代码并产生MLP参数的超网络来创建3D表面的变化。一旦了解到,我们的可变形模型为3D漫画提供了一个不错的编辑空间,支持基于标签的语义编辑和基于尖的基于尖的变形,这两者都产生了高度夸张和自然的3D讽刺形状。我们还展示了可变形模型的其他应用,例如自动3D漫画创作。
A 3D caricature is an exaggerated 3D depiction of a human face. The goal of this paper is to model the variations of 3D caricatures in a compact parameter space so that we can provide a useful data-driven toolkit for handling 3D caricature deformations. To achieve the goal, we propose an MLP-based framework for building a deformable surface model, which takes a latent code and produces a 3D surface. In the framework, a SIREN MLP models a function that takes a 3D position on a fixed template surface and returns a 3D displacement vector for the input position. We create variations of 3D surfaces by learning a hypernetwork that takes a latent code and produces the parameters of the MLP. Once learned, our deformable model provides a nice editing space for 3D caricatures, supporting label-based semantic editing and point-handle-based deformation, both of which produce highly exaggerated and natural 3D caricature shapes. We also demonstrate other applications of our deformable model, such as automatic 3D caricature creation.