论文标题
分布式控制大型多机器人系统的几何模式形成
Distributed control for geometric pattern formation of large-scale multirobot systems
论文作者
论文摘要
在许多涉及大规模多代理系统的任务中,几何模式形成至关重要。示例包括进行监视的移动媒介,无人机或机器人群或智能运输系统。当前,大多数旨在实现网络系统中模式形成的控制策略要么表现出良好的性能,但需要昂贵的传感器和通信设备,或者传感器要求较小,但行为的表现较差。同样,它们通常需要某些代理之间的某些规定的结构互连(例如,常规晶格,全网络等)。在本文中,我们提供了一个基于分布式位移的控制法,该法律允许大量代理实现三角形和方形晶格,具有低传感器要求,而无需代理之间的通信。此外,提出了一种简单而强大的适应定律,以自动调整控制收益,以减少设计工作,同时提高鲁棒性和灵活性。我们通过数值模拟和实验显示了方法的有效性和鲁棒性,并将其与现有文献的其他方法进行了比较。
Geometric pattern formation is crucial in many tasks involving large-scale multi-agent systems. Examples include mobile agents performing surveillance, swarm of drones or robots, or smart transportation systems. Currently, most control strategies proposed to achieve pattern formation in network systems either show good performance but require expensive sensors and communication devices, or have lesser sensor requirements but behave more poorly. Also, they often require certain prescribed structural interconnections between the agents (e.g., regular lattices, all-to-all networks etc). In this paper, we provide a distributed displacement-based control law that allows large group of agents to achieve triangular and square lattices, with low sensor requirements and without needing communication between the agents. Also, a simple, yet powerful, adaptation law is proposed to automatically tune the control gains in order to reduce the design effort, while improving robustness and flexibility. We show the validity and robustness of our approach via numerical simulations and experiments, comparing it with other approaches from the existing literature.