论文标题
SERCNN:在检测Twitter上检测抑郁症的堆叠嵌入重复卷积神经网络
SERCNN: Stacked Embedding Recurrent Convolutional Neural Network in Detecting Depression on Twitter
论文作者
论文摘要
常规的识别抑郁症的方法无法扩展,公众对心理健康的认识有限,尤其是在发展中国家。从最近的研究中可以明显看出,社交媒体有可能更涉及心理健康筛查。按时间顺序排列的大量第一人称叙事帖子可以在一段时间内为自己的思想,感觉,行为或情绪提供见解,从而更好地理解在线空间中反映的抑郁症状。在本文中,我们提出了SERCNN,该文章通过(1)从不同域中堆叠两个预处理的嵌入方式,并(2)重新引入MLP分类器的嵌入情况。我们的Sercnn在最先进的基线和其他基线方面表现出色,在5倍的交叉验证设置中达到93.7%的精度。由于并非所有用户都共享相同级别的在线活动,因此我们介绍了固定观察窗口的概念,该窗口量化了预定义的帖子中的观察期。 Sercnn的精度为87%,与BERT模型相当,而参数数量却少98%,Sercnn的表现出色,其精度非常出色。我们的发现为在社交媒体上检测抑郁症的方向开辟了一个有希望的方向,并涉及较少的推断,以为具有成本效益和及时干预的解决方案创建解决方案。我们希望我们的工作能够使该研究领域在现有临床实践中更接近现实世界的采用。
Conventional approaches to identify depression are not scalable, and the public has limited awareness of mental health, especially in developing countries. As evident by recent studies, social media has the potential to complement mental health screening on a greater scale. The vast amount of first-person narrative posts in chronological order can provide insights into one's thoughts, feelings, behavior, or mood for some time, enabling a better understanding of depression symptoms reflected in the online space. In this paper, we propose SERCNN, which improves the user representation by (1) stacking two pretrained embeddings from different domains and (2) reintroducing the embedding context to the MLP classifier. Our SERCNN shows great performance over state-of-the-art and other baselines, achieving 93.7% accuracy in a 5-fold cross-validation setting. Since not all users share the same level of online activity, we introduced the concept of a fixed observation window that quantifies the observation period in a predefined number of posts. With as minimal as 10 posts per user, SERCNN performed exceptionally well with an 87% accuracy, which is on par with the BERT model, while having 98% less in the number of parameters. Our findings open up a promising direction for detecting depression on social media with a smaller number of posts for inference, towards creating solutions for a cost-effective and timely intervention. We hope that our work can bring this research area closer to real-world adoption in existing clinical practice.