论文标题

StyLeam:非参考图像质量评估的面向感知的无监督域的适应性

StyleAM: Perception-Oriented Unsupervised Domain Adaption for Non-reference Image Quality Assessment

论文作者

Lu, Yiting, Li, Xin, Liu, Jianzhao, Chen, Zhibo

论文摘要

深度神经网络(DNN)在非参考图像质量评估(NR-IQA)方面具有巨大潜力。但是,NR-IQA的注释是劳动密集型且耗时的,这严重限制了其对真实图像的应用。为了减轻对质量注释的依赖,一些作品已将无监督的域适应性(UDA)应用于NR-IQA。但是,上述方法忽略了分类中使用的对齐空间是优化的,因为该空间不是为了感知而精心设计的。为了解决这一挑战,我们提出了一个有效的面向感知的无监督域适应方法,用于NR-IQA,该方法通过富含标签的源域数据将足够的知识转移到通过样式的对齐和混合物来标记无标签的源域数据。具体而言,我们发现了一个更紧凑,更可靠的空间,即基于有趣/惊人的观察结果,以感知为导向的UDA的特征样式空间,即DNN中深层的特征样式(即平均值和方差)与NR-IQA中的质量分数完全相关。因此,我们建议在更面向感知的空间(即特征样式空间)中对齐源和目标域,以减少其他质量 - Irretrelevant特征因素的干预措施。此外,为了提高质量得分与其功能样式之间的一致性,我们还提出了一种新颖的功能增强策略样式混合,它将DNN的最后一层之前将功能样式(即平均值和差异)混合在一起,并混合使用标签。对两个典型的跨域设置(即合成至真实性和多种变形)的广泛实验结果证明了我们对NR-IQA提出的造型的有效性。

Deep neural networks (DNNs) have shown great potential in non-reference image quality assessment (NR-IQA). However, the annotation of NR-IQA is labor-intensive and time-consuming, which severely limits their application especially for authentic images. To relieve the dependence on quality annotation, some works have applied unsupervised domain adaptation (UDA) to NR-IQA. However, the above methods ignore that the alignment space used in classification is sub-optimal, since the space is not elaborately designed for perception. To solve this challenge, we propose an effective perception-oriented unsupervised domain adaptation method StyleAM for NR-IQA, which transfers sufficient knowledge from label-rich source domain data to label-free target domain images via Style Alignment and Mixup. Specifically, we find a more compact and reliable space i.e., feature style space for perception-oriented UDA based on an interesting/amazing observation, that the feature style (i.e., the mean and variance) of the deep layer in DNNs is exactly associated with the quality score in NR-IQA. Therefore, we propose to align the source and target domains in a more perceptual-oriented space i.e., the feature style space, to reduce the intervention from other quality-irrelevant feature factors. Furthermore, to increase the consistency between quality score and its feature style, we also propose a novel feature augmentation strategy Style Mixup, which mixes the feature styles (i.e., the mean and variance) before the last layer of DNNs together with mixing their labels. Extensive experimental results on two typical cross-domain settings (i.e., synthetic to authentic, and multiple distortions to one distortion) have demonstrated the effectiveness of our proposed StyleAM on NR-IQA.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源