论文标题

学习子空间集群的愿意表示

Learning idempotent representation for subspace clustering

论文作者

Wei, Lai, Liu, Shiteng, Zhou, Rigui, Zhu, Changming

论文摘要

光谱型子空间聚类算法成功的关键点是寻求重建系数矩阵,这些矩阵可以忠实地揭示数据集的子空间结构。理想的重建系数矩阵应该具有两个属性:1)它是块对角线,每个块指示一个子空间; 2)每个块完全连接。尽管已经提出了各种频谱类型子空间聚类算法,但这些算法构建的重建系数矩阵中仍然存在一些缺陷。我们发现,标准化会员矩阵自然满足上述两个条件。因此,在本文中,我们设计了一种基本表示表示(IDR)算法来追求近似标准化成员矩阵的重建系数矩阵。 IDR针对重建系数矩阵设计了一个新的IDEMTOTENT约束。通过结合双随机约束,可以直接实现与归一化构件矩阵封闭的系数矩阵。我们提出了用于解决IDR问题的优化算法,并分析其计算负担和收敛。 IDR和相关算法之间的比较显示IDR的优势。在合成和现实世界数据集上进行的大量实验证明,IDR是一种有效而有效的子空间聚类算法。

The critical point for the successes of spectral-type subspace clustering algorithms is to seek reconstruction coefficient matrices which can faithfully reveal the subspace structures of data sets. An ideal reconstruction coefficient matrix should have two properties: 1) it is block diagonal with each block indicating a subspace; 2) each block is fully connected. Though there are various spectral-type subspace clustering algorithms have been proposed, some defects still exist in the reconstruction coefficient matrices constructed by these algorithms. We find that a normalized membership matrix naturally satisfies the above two conditions. Therefore, in this paper, we devise an idempotent representation (IDR) algorithm to pursue reconstruction coefficient matrices approximating normalized membership matrices. IDR designs a new idempotent constraint for reconstruction coefficient matrices. And by combining the doubly stochastic constraints, the coefficient matrices which are closed to normalized membership matrices could be directly achieved. We present the optimization algorithm for solving IDR problem and analyze its computation burden as well as convergence. The comparisons between IDR and related algorithms show the superiority of IDR. Plentiful experiments conducted on both synthetic and real world datasets prove that IDR is an effective and efficient subspace clustering algorithm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源