论文标题

关于道林光谱序列的不变性

On the invariance of the Dowlin spectral sequence

论文作者

Tripp, Samuel, Winkeler, Zachary

论文摘要

给定链接$ l $,道林构建了一个过滤的复合体,诱导了$ e_2 $ - page is构象的光谱序列,归因于Khovanov同源性$ \ overline {kh}(kh}(l)$和$ e_ \ e_ \ iffty $ - infty $ - page isomorphic isomorphic ins of the nenot floer floer floer $ $ \ widehat $ \ widehat $ \ fiphat {hfk}在本文中,我们证明该频谱序列的$ e_k $ - $页面也是链接不变的,以$ k \ ge 3 $。

Given a link $L$, Dowlin constructed a filtered complex inducing a spectral sequence with $E_2$-page isomorphic to the Khovanov homology $\overline{Kh}(L)$ and $E_\infty$-page isomorphic to the knot Floer homology $\widehat{HFK}(m(L))$ of the mirror of the link. In this paper, we prove that the $E_k$-page of this spectral sequence is also a link invariant, for $k\ge 3$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源