论文标题
Gogreen调查:以$ \ boldsymbol {z} \ gtrsim 1 $限制大型簇中的卫星淬火时间尺度
The GOGREEN Survey: Constraining the Satellite Quenching Timescale in Massive Clusters at $\boldsymbol{z} \gtrsim 1$
论文作者
论文摘要
我们通过组合$ 14 $ smostive($ 10^{13.8} <m _ {\ mathrm {halo}}/\ mathrm {m} _ {\ odot} <10^{15^15} $ 0.8 <z <z <z <z <z <z <z <z <z <z <z <z <z <z <z <z <z <z < $ 56 $ Redshift匹配的类似物来自Illustristng模拟。 Our fiducial model, which is parameterized by the satellite quenching timescale ($τ_{\rm quench}$), accounts for quenching in our simulated satellite population both at the time of infall by using the observed coeval field quenched fraction and after infall by tuning $τ_{\rm quench}$ to reproduce the observed satellite quenched fraction versus stellar质量趋势。该模型成功地重现了观察到的卫星淬灭分数作为恒星质量的函数(按结构),预测的以群集为中心的半径和红移,并且与观察到的场和群集恒星质量功能在$ z \ sim 1 $一致。我们发现,卫星淬火时间尺度是大规模依赖的,与以前的低和中间红移的一些研究相抵触。在稳定的质量范围内($ M _ {\ Star}> 10^{10}〜\ \ \ \ \ Mathrm {M} _ {\ odot} $),我们发现卫星淬火时间表随着$ \ sim1.6〜 {\ sim1.6〜 {\ rm rm gyr} $ rm gyr} $ rm gyr}的增加而减少$ 10^{10}〜\ Mathrm {m} _ {\ odot} $ to $ \ sim 0.6-1〜 {\ rm gyr} $ at $ 10^{11}}〜\ mathrm {m} _ {m} _ {\ odot} $,并且与总的冷气($} $一致(中级$ z $的DEPTETION TIMESCALES表明,饥饿可能是$ z <2 $的环境淬火的主要驱动力。最后,尽管环境机制在淬灭大量卫星方面相对有效,但我们发现超大型卫星的大多数($ \ sim65-80 \%$)($ m _ {\ star}> 10^{11}}}}}〜\ mathrm {mathrm {m {m} _ {\ odot} _ {\ odot} $ quench
We model satellite quenching at $z \sim 1$ by combining $14$ massive ($10^{13.8} < M_{\mathrm{halo}}/\mathrm{M}_{\odot} < 10^{15}$) clusters at $0.8 < z < 1.3$ from the GOGREEN and GCLASS surveys with accretion histories of $56$ redshift-matched analogs from the IllustrisTNG simulation. Our fiducial model, which is parameterized by the satellite quenching timescale ($τ_{\rm quench}$), accounts for quenching in our simulated satellite population both at the time of infall by using the observed coeval field quenched fraction and after infall by tuning $τ_{\rm quench}$ to reproduce the observed satellite quenched fraction versus stellar mass trend. This model successfully reproduces the observed satellite quenched fraction as a function of stellar mass (by construction), projected cluster-centric radius, and redshift and is consistent with the observed field and cluster stellar mass functions at $z \sim 1$. We find that the satellite quenching timescale is mass dependent, in conflict with some previous studies at low and intermediate redshift. Over the stellar mass range probed ($M_{\star}> 10^{10}~\mathrm{M}_{\odot}$), we find that the satellite quenching timescale decreases with increasing satellite stellar mass from $\sim1.6~{\rm Gyr}$ at $10^{10}~\mathrm{M}_{\odot}$ to $\sim 0.6 - 1~{\rm Gyr}$ at $10^{11}~\mathrm{M}_{\odot}$ and is roughly consistent with the total cold gas (H{\scriptsize I}+H$_{2}$) depletion timescales at intermediate $z$, suggesting that starvation may be the dominant driver of environmental quenching at $z < 2$. Finally, while environmental mechanisms are relatively efficient at quenching massive satellites, we find that the majority ($\sim65-80\%$) of ultra-massive satellites ($M_{\star} > 10^{11}~\mathrm{M}_{\odot}$) are quenched prior to infall.