论文标题
终点分解和偶然的gluon推力重新启动
Endpoint factorization and next-to-leading power resummation of gluon thrust
论文作者
论文摘要
卷积积分中的端点差异出现在近代领域的分解定理中,阻止了标准方法在对撞机物理学中恢复大型对数功率抑制的校正。我们研究了两喷射区域推力分布的功率抑制构型,在该区域,Gluon引起的射流后坐力针对夸克 - 易夸克对。借助操作端点分解条件,我们得出了一个分解公式,其中单个项不含端点差异,可以用重新归一化的硬化,(抗)共线和四个维度的软功能来写入。该框架使我们能够使用专门的对数准确度使用专门的重量化组方法执行端点 - divergent observables $ _ {\ rm i} $ observables的第一个重新启动。
Endpoint divergences in the convolution integrals appearing in next-to-leading-power factorization theorems prevent a straightforward application of standard methods to resum large logarithmic power-suppressed corrections in collider physics. We study the power-suppressed configuration of the thrust distribution in the two-jet region, where a gluon-initiated jet recoils against a quark-antiquark pair. With the aid of operatorial endpoint factorization conditions, we derive a factorization formula where the individual terms are free from endpoint divergences and can be written in terms of renormalized hard, (anti) collinear, and soft functions in four dimensions. This framework enables us to perform the first resummation of the endpoint-divergent SCET$_{\rm I}$ observables at the leading logarithmic accuracy using exclusively renormalization-group methods.