论文标题
RHA-NET:具有残留块和混合注意机制的编码器 - 编码器网络,用于路面裂纹分割
RHA-Net: An Encoder-Decoder Network with Residual Blocks and Hybrid Attention Mechanisms for Pavement Crack Segmentation
论文作者
论文摘要
人行道表面数据的获取和评估在路面条件评估中起着至关重要的作用。在本文中,提出了一个称为RHA-NET的自动路面裂纹分割的有效端到端网络,以提高路面裂纹分割精度。 RHA-NET是通过将残留块(重块)和混合注意块集成到编码器架构体系结构中来构建的。重新建筑用于提高RHA-NET提取高级抽象特征的能力。混合注意块旨在融合低级功能和高级功能,以帮助模型专注于正确的频道和裂纹区域,从而提高RHA-NET的功能表现能力。构建并用于训练和评估所提出的模型,其中包含由自设计的移动机器人收集的789个路面裂纹图像的图像数据集。与其他最先进的网络相比,所提出的模型在综合消融研究中验证了添加残留块和混合注意机制的功能更好的性能以及添加残留块和混合注意机制的功能。此外,通过引入深度可分离卷积生成的模型的轻加权版本可以更好地实现性能和更快的处理速度,而U-NET参数数量为1/30。开发的系统可以在嵌入式设备Jetson TX2(25 fps)上实时划分路面裂纹。实时实验拍摄的视频将在https://youtu.be/3xiogk0fig4上发布。
The acquisition and evaluation of pavement surface data play an essential role in pavement condition evaluation. In this paper, an efficient and effective end-to-end network for automatic pavement crack segmentation, called RHA-Net, is proposed to improve the pavement crack segmentation accuracy. The RHA-Net is built by integrating residual blocks (ResBlocks) and hybrid attention blocks into the encoder-decoder architecture. The ResBlocks are used to improve the ability of RHA-Net to extract high-level abstract features. The hybrid attention blocks are designed to fuse both low-level features and high-level features to help the model focus on correct channels and areas of cracks, thereby improving the feature presentation ability of RHA-Net. An image data set containing 789 pavement crack images collected by a self-designed mobile robot is constructed and used for training and evaluating the proposed model. Compared with other state-of-the-art networks, the proposed model achieves better performance and the functionalities of adding residual blocks and hybrid attention mechanisms are validated in a comprehensive ablation study. Additionally, a light-weighted version of the model generated by introducing depthwise separable convolution achieves better a performance and a much faster processing speed with 1/30 of the number of U-Net parameters. The developed system can segment pavement crack in real-time on an embedded device Jetson TX2 (25 FPS). The video taken in real-time experiments is released at https://youtu.be/3XIogk0fiG4.