论文标题
热弹性流体相变的连续热力学
Continuum Thermodynamics of the Phase Transformation of Thermoelastic Fluids
论文作者
论文摘要
这项研究使用纯热弹性流体的连续热力学检查其相变。为了检查相变动力学,特别强调了熵不平等公理的跳跃条件,从而恢复了常规结果,即稳定相位平衡与整个相边界上温度,压力和自由焓的连续性相吻合。此外,这种跳跃条件会导致相变质量通量的组成关系,$ - \ weft [\ left [\ frac {1} {t} {t} {t} \ mathbf {q} \ right] \ right] \ right] \ cdot \ cdot \ cdot \ cdot \ cdbf \ cdbf {n} $ \ left [\ left [\ frac {1} {t} \ mathbf {q} \ right] \ right] \ cdot \ cdot \ cdot \ cdot \ mathbf {n}^γ$是熵磁带中的跳跃正常的跳跃,并且跨相接口$γ$,$ \ weft [\ weft [\ weft [\ weft [s prirt] $ right right [s]这种关系意味着相变必须伴随着跨相边界的温度跃升。在此公式和有限的可用实验数据之间发现令人鼓舞的一致性。需要进一步的证据来最终验证该提出的本构模型。该连续框架非常适合在计算框架(例如有限元方法)中实现。
This study uses continuum thermodynamics of pure thermoelastic fluids to examine their phase transformation. To examine phase transformation kinetics, a special emphasis is placed on the jump condition for the axiom of entropy inequality, thereby recovering the conventional result that stable phase equilibrium coincides with continuity of temperature, pressure, and free enthalpy across the phase boundary. Moreover, this jump condition leads to the formulation of a constitutive relation for the phase transformation mass flux, $-\left[\left[\frac{1}{T}\mathbf{q}\right]\right]\cdot\mathbf{n}^Γ/\left[\left[s\right]\right]$, where $\left[\left[\frac{1}{T}\mathbf{q}\right]\right]\cdot\mathbf{n}^Γ$ is the jump in entropy flux normal to, and across the phase interface $Γ$, and $\left[\left[s\right]\right]$ is the corresponding jump in entropy. This relation implies that phase transformations must be accompanied by a jump in temperature across the phase boundary. Encouraging agreement is found between this formula and limited available experimental data. Further evidence is needed to conclusively validate this proposed constitutive model. This continuum framework is well suited for implementation in a computational framework, such as the finite element method.