论文标题

最小Ferenczi subfrifts的动力学特性

Dynamical properties of minimal Ferenczi subshifts

论文作者

Arbulú, Felipe, Durand, Fabien

论文摘要

我们提供了用有限的垫片对等级的S-ADIC表示,并以这种方式称为“ Ferenczi subshifts'”。我们的目的是表明这种方法非常方便地研究等级One系统的动态行为。例如,我们计算它们的拓扑等级,强轨道等效类别。我们观察到它们具有具有离散频谱的Toeplitz subshift的诱导系统。我们还表征了最小的Ferenczi子缩影的连续和非连续特征值。

We provide an explicit S-adic representation of rank one subshifts with bounded spacers and call the subshifts obtained in this way ''Ferenczi subshifts''. We aim to show that this approach is very convenient to study the dynamical behavior of rank one systems. For instance, we compute their topological rank, the strong and the weak orbit equivalence class. We observe that they have an induced systems that is a Toeplitz subshift having discrete spectrum. We also characterize continuous and non continuous eigenvalues of minimal Ferenczi subshifts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源