论文标题

具有各种超微结构和大小的纳米颗粒的自动分类

Automated Classification of Nanoparticles with Various Ultrastructures and Sizes

论文作者

Zelenka, Claudius, Kamp, Marius, Strohm, Kolja, Kadoura, Akram, Johny, Jacob, Koch, Reinhard, Kienle, Lorenz

论文摘要

准确地测量纳米颗粒的大小,形态和结构非常重要,因为它们在许多应用中都非常依赖其特性。在本文中,我们提出了一种基于深度学习的方法,用于纳米颗粒测量和分类,该方法从少量的扫描传输电子显微镜图像的数据集训练。我们的方法由两个阶段组成:本地化,即检测纳米颗粒和分类,即其超微结构的分类。对于每个阶段,我们通过分析不同最新神经网络的分析来优化分割和分类。我们展示了如何使用图像处理或使用各种图像产生神经网络的合成图像的产生来改善两个阶段的结果。最后,将算法应用于双金属纳米颗粒,证明了大小分布的自动数据收集,包括复杂超微结构的分类。开发的方法可以很容易地转移到其他材料系统和纳米颗粒结构中。

Accurately measuring the size, morphology, and structure of nanoparticles is very important, because they are strongly dependent on their properties for many applications. In this paper, we present a deep-learning based method for nanoparticle measurement and classification trained from a small data set of scanning transmission electron microscopy images. Our approach is comprised of two stages: localization, i.e., detection of nanoparticles, and classification, i.e., categorization of their ultrastructure. For each stage, we optimize the segmentation and classification by analysis of the different state-of-the-art neural networks. We show how the generation of synthetic images, either using image processing or using various image generation neural networks, can be used to improve the results in both stages. Finally, the application of the algorithm to bimetallic nanoparticles demonstrates the automated data collection of size distributions including classification of complex ultrastructures. The developed method can be easily transferred to other material systems and nanoparticle structures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源