论文标题

使用信息流揭示的网络上噪声引起的过渡的级联

Cascades towards noise-induced transitions on networks revealed using information flows

论文作者

van Elteren, Casper, Quax, Rick, Sloot, Peter

论文摘要

从神经元组件到社交系统的复杂网络可以在无外部强迫的情况下突然出现,系统范围的过渡。这些内源性产生的``噪声引起的过渡''从网络结构和局部动力学之间的复杂相互作用中出现,但它们的基本机制仍然难以捉摸。我们的研究揭示了节点在由Boltzmann-Gibbs分布支配的动态网络中催化这些过渡中起作用的两个关键作用。我们介绍了``引发者节点''的概念,该概念吸收并传播了短暂的波动,暂时破坏了邻居的稳定。该过程启动了多米诺骨牌效应,其中节点的稳定性与给它的不稳定邻居的数量成反比。当系统接近临界点时,我们确定编码系统的长期内存的``稳定器节点'',最终逆转了多米诺骨牌效应并将网络解决为新的稳定吸引子。通过有针对性的干预措施,我们证明了如何操纵这些角色以促进或抑制系统性过渡。我们的发现为理解和可能控制复杂网络中内源性产生的亚稳态行为提供了一个新颖的框架。这种方法为从神经科学到社会动态及其他地区的不同领域的关键过渡提供了新的途径。

Complex networks, from neuronal assemblies to social systems, can exhibit abrupt, system-wide transitions without external forcing. These endogenously generated ``noise-induced transitions'' emerge from the intricate interplay between network structure and local dynamics, yet their underlying mechanisms remain elusive. Our study unveils two critical roles that nodes play in catalyzing these transitions within dynamical networks governed by the Boltzmann-Gibbs distribution. We introduce the concept of ``initiator nodes'', which absorb and propagate short-lived fluctuations, temporarily destabilizing their neighbors. This process initiates a domino effect, where the stability of a node inversely correlates with the number of destabilized neighbors required to tip it. As the system approaches a tipping point, we identify ``stabilizer nodes'' that encode the system's long-term memory, ultimately reversing the domino effect and settling the network into a new stable attractor. Through targeted interventions, we demonstrate how these roles can be manipulated to either promote or inhibit systemic transitions. Our findings provide a novel framework for understanding and potentially controlling endogenously generated metastable behavior in complex networks. This approach opens new avenues for predicting and managing critical transitions in diverse fields, from neuroscience to social dynamics and beyond.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源