论文标题

基于ZDD的算法框架,用于解决最短的重新配置问题

ZDD-Based Algorithmic Framework for Solving Shortest Reconfiguration Problems

论文作者

Ito, Takehiro, Kawahara, Jun, Nakahata, Yu, Soh, Takehide, Suzuki, Akira, Teruyama, Junichi, Toda, Takahisa

论文摘要

本文提出了一个使用零抑制的二进制决策图(ZDDS)的算法框架,用于各种重新配置问题,这是集合家族的数据结构。通常,重新配置问题检查是否存在两个给定的可行解决方案(例如,输入图的独立集合)之间的分步变换,以使所有中间结果也可行,并且每个步骤都可以遵守固定的重新配置规则(例如,将单个Vertex添加到/添加独立集合)。所有可行解决方案形成的解决方案空间可以在输入大小中指数呈指数,实际上许多重新配置问题已知是Pspace complete。本文表明,提出的框架中的算法通过使用ZDD来压缩解决方案空间来有效地进行广度优先搜索,并在存在两个给定的可行解决方案之间找到最短的转换。此外,提出的框架提供了有关解决方案空间的丰富信息,例如解决方案空间的连接以及所有可行解决方案可从指定的解决方案。我们证明了所提出的框架可以应用于各种重新配置问题,并通过实验评估其性能。

This paper proposes an algorithmic framework for various reconfiguration problems using zero-suppressed binary decision diagrams (ZDDs), a data structure for families of sets. In general, a reconfiguration problem checks if there is a step-by-step transformation between two given feasible solutions (e.g., independent sets of an input graph) of a fixed search problem such that all intermediate results are also feasible and each step obeys a fixed reconfiguration rule (e.g., adding/removing a single vertex to/from an independent set). The solution space formed by all feasible solutions can be exponential in the input size, and indeed many reconfiguration problems are known to be PSPACE-complete. This paper shows that an algorithm in the proposed framework efficiently conducts the breadth-first search by compressing the solution space using ZDDs, and finds a shortest transformation between two given feasible solutions if exists. Moreover, the proposed framework provides rich information on the solution space, such as the connectivity of the solution space and all feasible solutions reachable from a specified one. We demonstrate that the proposed framework can be applied to various reconfiguration problems, and experimentally evaluate their performances.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源