论文标题

$ \ Mathfrak g \ _2 $的换向关系和Fano飞机的发病率几何形状

Commutation relations of $\mathfrak g\_2$ and the incidence geometry of the Fano plane

论文作者

de Traubenberg, Michel Rausch, Slupinski, M J

论文摘要

我们继续对Fano Plane $ {\ cal f} $上的结构进行研究和分类,其双$ {\ cal f}^\ ast $涉及八元建设和lie代数$ \ mathfrak g_2(\ mathbb f)$ \ mathbb f $。这些是“组成因子”:$ {\ cal f} \ times {\ cal f} \ to \ { - 1,1,1,1 \} $,诱导八次乘法,和一个函数$Δ^\ ast:aut(aut(aut({\ cal f}) \ in aut({\ cal f})$可以将八元的自动形态提升为iff $δ^\ ast(g,\ cdot)$是$ {\ cal f} $上的函数的radon变换。我们将$ aut({\ cal f})$在$ {\ cal f} $上的动作提升到非平凡的八倍覆盖$ aut({\ cal f})$上的动作,在$ \ hat $ \ hat {\ cal f} $ of $ {\ cal f} $上包含的双重覆盖率{\ cal f} $。这是对自动形态学的八氧化行动的延伸。最后,我们将$ \ Mathfrak g_2(\ Mathbb F)$的生成点配对与发电括号相关联,以$ {\ cal f} $和$ε$的发病率几何形状而言。

We continue our study and classification of structures on the Fano plane ${\cal F}$ and its dual ${\cal F}^\ast$ involved in the construction of octonions and the Lie algebra $\mathfrak g_2 (\mathbb F)$ over a field $\mathbb F$. These are a "composition factor": ${\cal F}\times {\cal F} \to\{-1, 1\}$, inducing an octonion multiplication, and a function $δ^\ast : Aut({\cal F}) \times {\cal F}^\ast \to \{-1, 1\}$ such that $g \in Aut({\cal F})$ can be lifted to an automorphism of the octonions iff $δ^\ast(g, \cdot)$ is the Radon transform of a function on ${\cal F}$. We lift the action of $Aut({\cal F})$ on ${\cal F}$ to the action of a non-trivial eight-fold covering $Aut({\cal F})$ on a twofold covering $\hat {\cal F}$ of ${\cal F}$ contained in the octonions. This extends tautologically to an action on the octonions by automorphism. Finally, we associate to incident point-line pairs a generating set of $\mathfrak g_2 (\mathbb F)$ and express brackets in terms of the incidence geometry of ${\cal F}$ and $ε$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源