论文标题

拉伸能量最小化的基本理论和R线性收敛,以供epiareal参数化

Fundamental Theory and R-linear Convergence of Stretch Energy Minimization for Equiareal parameterizations

论文作者

Huang, Tsung-Ming, Liao, Wei-Hung, Lin, Wen-Wei

论文摘要

在本文中,我们首先将有限失真问题从$ \ Mathbb {r}^2 $中的有限域扩展到$ \ Mathbb {r}^3 $中的封闭属零属表面。然后,我们为简单连接的封闭表面$ \ MATHCAL {M} $和单位球$ \ MATHBB {S}^2 $之间的球形等级参数提供了理论基础,这是通过最小化$ \ overline的总面积变形能量的。只要我们确定了总面积扭曲能的最小化器,则与初始形成映射组成的最小化器确定了扩展平面之间的等级图。借助逆立体投影,我们可以在$ \ mathcal {m} $和$ \ mathbb {s}^2 $之间得出epiareal映射。总面积扭曲能量可以分别重写与南半球和北半球相关的Dirichlet能量之和,并且可以通过交替求解相应的Laplacian方程来减少。基于这一基础理论,我们为计算$ \ MATHCAL {M} $和$ \ MATHBB {S}^2 $之间的球形epiareal参数化开发了修改的拉伸能量最小化。另外,在某些温和条件下,我们验证我们提出的算法是否具有渐近的R线性收敛或形成准周期溶液。在各种基准上进行的数值实验验证了收敛的假设始终保持并表明开发的改良拉伸能量最小化的效率,可靠性和鲁棒性。

In this paper, we first extend the finite distortion problem from the bounded domains in $\mathbb{R}^2$ to the closed genus-zero surfaces in $\mathbb{R}^3$ by the stereographic projection. Then we derive a theoretical foundation for spherical equiareal parameterizations between a simply connected closed surface $\mathcal{M}$ and a unit sphere $\mathbb{S}^2$ via minimizing the total area distortion energy on $\overline{\mathbb{C}}$. Provided we determine the minimizer of the total area distortion energy, the minimizer composed with the initial conformal map determines the equiareal map between the extended planes. Taking the inverse stereographic projection, we can derive the equiareal map between $\mathcal{M}$ and $\mathbb{S}^2$. The total area distortion energy can be rewritten into the sum of Dirichlet energies associated with the southern and northern hemispheres, respectively, and can be decreased by alternatingly solving the corresponding Laplacian equations. Based on this foundational theory, we develop a modified stretch energy minimization for the computation of the spherical equiareal parameterization between $\mathcal{M}$ and $\mathbb{S}^2$. In addition, under some mild conditions, we verify that our proposed algorithm has asymptotically R-linear convergence or forms a quasi-periodic solution. Numerical experiments on various benchmarks validate the assumptions for convergence always hold and indicate the efficiency, reliability and robustness of the developed modified stretch energy minimization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源