论文标题
在两个变量和toral $ m $ iSometric对的合理功能的联合完全单调性
Joint complete monotonicity of rational functions in two variables and toral $m$-isometric pairs
论文作者
论文摘要
我们讨论了分类多项式$ p:\ mathbb r^2_+ \ rightArow(0,\ infty)$的问题,其中$ \ frac {1} {p} = \ {\ frac {1} {1} {1}} $y。$ $ y。$我们表明,如果$ p(x,y)= a+b x+c y+d xy $,$ a> 0 $ a> 0 $和$ b,c,d \ geq 0,然后$ \ frac {1} {p} {p} $完全单调,则仅在$ a d -d -b c \ leq的情况下完全单调。 $ 3 $ - iSomement加权$ 2 $缩短。
We discuss the problem of classifying polynomials $p : \mathbb R^2_+ \rightarrow (0, \infty)$ for which $\frac{1}{p}=\{\frac{1}{p(m, n)}\}_{m, n \geq 0}$ is joint completely monotone, where $p$ is a linear polynomial in $y.$ We show that if $p(x, y)=a+b x+c y+d xy$ with $a > 0$ and $b, c, d \geq 0,$ then $\frac{1}{p}$ is joint completely monotone if and only if $a d - b c \leq 0.$ We also present an application to the Cauchy dual subnormality problem for toral $3$-isometric weighted $2$-shifts.