论文标题

通过反思不可观察到人类协作中的感知互补性

Toward Supporting Perceptual Complementarity in Human-AI Collaboration via Reflection on Unobservables

论文作者

Holstein, Kenneth, De-Arteaga, Maria, Tumati, Lakshmi, Cheng, Yanghuidi

论文摘要

在许多现实世界的背景下,成功的人类协作要求人类有效地将补充信息来源整合到AI信息的决策中。但是,实际上,人类决策者常常缺乏对AI模型与自己有关的信息的了解。关于如何有效地交流了不可观察的指南,几乎没有可用的准则:可能影响结果但模型无法使用的功能。在这项工作中,我们进行了一项在线实验,以了解是否以及如何显式交流潜在相关的不可观念能力会影响人们在做出预测时如何整合模型输出和不可观察的。我们的发现表明,提示有关不可观念的提示可以改变人类整合模型输出和不可观察的方式,但不一定会提高性能。此外,这些提示的影响可能会根据决策者的先前领域专业知识而有所不同。我们通过讨论对基于AI的决策支持工具的未来研究和设计的影响来结束。

In many real world contexts, successful human-AI collaboration requires humans to productively integrate complementary sources of information into AI-informed decisions. However, in practice human decision-makers often lack understanding of what information an AI model has access to in relation to themselves. There are few available guidelines regarding how to effectively communicate about unobservables: features that may influence the outcome, but which are unavailable to the model. In this work, we conducted an online experiment to understand whether and how explicitly communicating potentially relevant unobservables influences how people integrate model outputs and unobservables when making predictions. Our findings indicate that presenting prompts about unobservables can change how humans integrate model outputs and unobservables, but do not necessarily lead to improved performance. Furthermore, the impacts of these prompts can vary depending on decision-makers' prior domain expertise. We conclude by discussing implications for future research and design of AI-based decision support tools.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源