论文标题

由彩色噪声驱动的分数随机热方程的小球概率

Small Ball Probabilities for the Fractional Stochastic Heat Equation Driven by a Colored Noise

论文作者

Chen, Jiaming

论文摘要

我们考虑$ d $ d $ d $ d $ \ mathbb {t}^d:= \ left [ - \ frac {1} {2},\ frac {1} {1} {2} {2} \ orirt] u(t,\ textbf {x})= - ( - δ)^{α/2} u(t,t,\ textbf {x})+σ(t,t,\ textbf {x},u)\ dot {f}(f}(f}(t,t,t,t,t,\ textbf {x}) \ Mathbb {t}^d,t \ in \ Mathbb {r} _+,\]其中$α\ in(1,2] $和$ \ dot {f}(t,t,\ textbf {x})$是一般的高斯噪声,是$ with in As the us and ys $。 $ u(0,\ textbf {x})\ equiv 0 $时,解决方案$ u $的小球概率。

We consider the fractional stochastic heat equation on the $d$-dimensional torus $\mathbb{T}^d:=\left[-\frac{1}{2},\frac{1}{2}\right]^d$, $d\geq 1$, with periodic boundary conditions: \[ \partial_t u(t,\textbf{x})= -(-Δ)^{α/2}u(t,\textbf{x})+σ(t,\textbf{x},u)\dot{F}(t,\textbf{x})\quad \textbf{x}\in \mathbb{T}^d,t\in\mathbb{R}_+ ,\] where $α\in(1,2]$ and $\dot{F}(t,\textbf{x})$ is a generalized Gaussian noise which is white in time and colored in space. Assuming that $σ$ is Lipschitz in $u$ and uniformly bounded, we estimate small ball probabilities for the solution $u$ when $u(0,\textbf{x})\equiv 0$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源