论文标题

分子属性预测的图神经网络中的物理池函数

Physical Pooling Functions in Graph Neural Networks for Molecular Property Prediction

论文作者

Schweidtmann, Artur M., Rittig, Jan G., Weber, Jana M., Grohe, Martin, Dahmen, Manuel, Leonhard, Kai, Mitsos, Alexander

论文摘要

图形神经网络(GNN)正在化学工程中出现,用于基于分子图的物理化学特性的端到端学习。 GNNS的一个关键要素是合并函数,将原子矢量结合到分子指纹中。大多数以前的作品都使用标准池功能来预测各种属性。但是,不合适的合并功能会导致概括不佳的非物理GNN。我们根据有关学习特性的物理知识比较并选择有意义的GNN合并方法。通过量子机械计算计算出的分子特性证明了物理池函数的影响。我们还将结果与最近的SET2Set合并方法进行了比较。我们建议使用总和池进行预测,这些属性取决于分子大小,并比较分子大小无关的属性的合并函数。总体而言,我们表明物理池功能的使用会显着增强概括。

Graph neural networks (GNNs) are emerging in chemical engineering for the end-to-end learning of physicochemical properties based on molecular graphs. A key element of GNNs is the pooling function which combines atom feature vectors into molecular fingerprints. Most previous works use a standard pooling function to predict a variety of properties. However, unsuitable pooling functions can lead to unphysical GNNs that poorly generalize. We compare and select meaningful GNN pooling methods based on physical knowledge about the learned properties. The impact of physical pooling functions is demonstrated with molecular properties calculated from quantum mechanical computations. We also compare our results to the recent set2set pooling approach. We recommend using sum pooling for the prediction of properties that depend on molecular size and compare pooling functions for properties that are molecular size-independent. Overall, we show that the use of physical pooling functions significantly enhances generalization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源