论文标题

IIB类型的模量稳定在$ h^{2,1} = 50 $中

Moduli stabilization in type IIB orientifolds at $h^{2,1}=50$

论文作者

Tsagkaris, Konstantinos, Plauschinn, Erik

论文摘要

我们研究了具有O3和O7-planes的IIB字符串理论的Calabi-Yau Orientifold压缩中的模量稳定。我们考虑了一个hodge Number $ h^{2,1} = 50 $的Calabi-yau三倍,并通过三型通量稳定所有轴 - 二元和复杂结构模量。这是一项具有挑战性的任务,尤其是对于大型模量空间维度。为了解决这个问题,我们开发了一种算法,以生成$ 10^5 $通量真空吸尘器,带有小通量编号$ n _ {\ rm flux} $。根据Crinò等人的最新结果。我们估计tadpole-cancellation条件施加的限制为$ n _ {\ rm flux} \ leq \ mathcal o(10^3)$,但是,我们在搜索中获得的最小通量数是$ n _ {\ rm flux} = \ mathcal o(\ nathcal o(10^^{4})$。这尤其意味着对于我们数据集中的F端方程的所有解决方案,就满足了t的the unduceure。

We study moduli stabilization in Calabi-Yau orientifold compactifications of type IIB string theory with O3- and O7-planes. We consider a Calabi-Yau three-fold with Hodge number $h^{2,1}=50$ and stabilize all axio-dilaton and complex-structure moduli by three-form fluxes. This is a challenging task, especially for large moduli-space dimensions. To address this question we develop an algorithm to generate $10^5$ flux vacua with small flux number $N_{\rm flux}$. Based on recent results by Crinò et al. we estimate the bound imposed by the tadpole-cancellation condition as $N_{\rm flux}\leq \mathcal O(10^3)$, however, the smallest flux number we obtain in our search is of order $N_{\rm flux}=\mathcal O(10^{4})$. This implies, in particular, that for all solutions to the F-term equations in our data set the tadpole conjecture is satisfied.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源