论文标题
元插值:通过双元学习的时间 - 肢体框架插值
Meta-Interpolation: Time-Arbitrary Frame Interpolation via Dual Meta-Learning
论文作者
论文摘要
现有的视频框架插值方法只能在给定的中间时间步骤中插值框架,例如1/2。在本文中,我们旨在探索一种更具概括的视频框架插值,该视频框架插值处于任意时步。为此,我们考虑在元学习的帮助下以统一的方式处理不同的时间阶段。具体而言,我们开发了一个双元学习的帧插值框架,以通过上下文信息和光流的指导以及将时间步长为附带信息来合成中间帧。首先,构建了一个内容感知的元学习流程模块,以提高基于输入帧的下采样版本的光流估计的准确性。其次,使用精制的光流和时间步长为输入,运动吸引的元学习框架插值模块为在输入帧的粗翘曲版本的特征图上使用卷积操作中使用的每个像素生成卷积内核,以生成预测的帧。广泛的定性和定量评估以及消融研究表明,通过以如此精心设计的方式在我们的框架中引入元学习,我们的方法不仅可以实现与先进的框架插值方法相比,还具有超出的框架插值方法,而且还具有在任意时间的时间内支持插入的扩展能力。
Existing video frame interpolation methods can only interpolate the frame at a given intermediate time-step, e.g. 1/2. In this paper, we aim to explore a more generalized kind of video frame interpolation, that at an arbitrary time-step. To this end, we consider processing different time-steps with adaptively generated convolutional kernels in a unified way with the help of meta-learning. Specifically, we develop a dual meta-learned frame interpolation framework to synthesize intermediate frames with the guidance of context information and optical flow as well as taking the time-step as side information. First, a content-aware meta-learned flow refinement module is built to improve the accuracy of the optical flow estimation based on the down-sampled version of the input frames. Second, with the refined optical flow and the time-step as the input, a motion-aware meta-learned frame interpolation module generates the convolutional kernels for every pixel used in the convolution operations on the feature map of the coarse warped version of the input frames to generate the predicted frame. Extensive qualitative and quantitative evaluations, as well as ablation studies, demonstrate that, via introducing meta-learning in our framework in such a well-designed way, our method not only achieves superior performance to state-of-the-art frame interpolation approaches but also owns an extended capacity to support the interpolation at an arbitrary time-step.