论文标题

神经TSP求解器的无监督培训

Unsupervised Training for Neural TSP Solver

论文作者

Gaile, Elīza, Draguns, Andis, Ozoliņš, Emīls, Freivalds, Kārlis

论文摘要

越来越多的机器学习方法可以解决旅行推销员问题。但是,这些方法通常需要解决训练或使用需要大量调整的复杂加强学习方法的实例。为了避免这些问题,我们引入了一种新颖的无监督学习方法。我们使用针对TSP的整数线性程序的放松来构建不需要正确实例标签的损耗函数。随着离散化的可变,其最小值与最佳或近乎最佳的解决方案一致。此外,此损耗函数是可区分的,因此可以直接用于训练神经网络。我们将损失函数与图形神经网络和欧几里得和非对称TSP上的设计受控实验一起使用。我们的方法比监督学习不需要大型标记数据集具有优势。此外,我们的方法的性能超过了不对称TSP的强化学习,并且与欧几里得实例的增强学习相当。与增强学习相比,我们的方法也更稳定,更容易训练。

There has been a growing number of machine learning methods for approximately solving the travelling salesman problem. However, these methods often require solved instances for training or use complex reinforcement learning approaches that need a large amount of tuning. To avoid these problems, we introduce a novel unsupervised learning approach. We use a relaxation of an integer linear program for TSP to construct a loss function that does not require correct instance labels. With variable discretization, its minimum coincides with the optimal or near-optimal solution. Furthermore, this loss function is differentiable and thus can be used to train neural networks directly. We use our loss function with a Graph Neural Network and design controlled experiments on both Euclidean and asymmetric TSP. Our approach has the advantage over supervised learning of not requiring large labelled datasets. In addition, the performance of our approach surpasses reinforcement learning for asymmetric TSP and is comparable to reinforcement learning for Euclidean instances. Our approach is also more stable and easier to train than reinforcement learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源