论文标题

自由费米的一般深度热化

Generalized Deep Thermalization for Free Fermions

论文作者

Lucas, Maxime, Piroli, Lorenzo, De Nardis, Jacopo, De Luca, Andrea

论文摘要

在以平衡状态的非相互作用的孤立量子系统中,局部子系统通常会放松到非热固定状态。在标准框架中,有关系统其余部分的信息被丢弃,此类状态由广义吉布斯集团(GGE)描述,最大化熵的同时尊重当地保护法所施加的约束。在这里,我们表明后者还完全表征了最近引入的投影集合(PE),该集合(PE)是通过对系统的其余部分进行投影测量并记录结果来构建的。通过关注狭窄链中费米子高斯国家的时间演变,我们提出了一个随机的合奏,该合奏是由当地保护法构建的,我们称之为Deep GGE(DGGE)。对于无限温度初始状态,我们表明DGGE与高斯州的多种歧管上的通用HAAR随机合奏一致。对于无限和有限温度,我们使用蒙特卡洛方法来数值测试DGGE对PE的预测。我们特别研究了国家协方差矩阵和纠缠熵的$ k $ amomments,找到了出色的共识。我们的工作提供了朝着混乱系统和无限温度的情况下的投影合奏系统进行系统表征的第一步。

In non-interacting isolated quantum systems out of equilibrium, local subsystems typically relax to non-thermal stationary states. In the standard framework, information on the rest of the system is discarded, and such states are described by a Generalized Gibbs Ensemble (GGE), maximizing the entropy while respecting the constraints imposed by the local conservation laws. Here we show that the latter also completely characterize a recently introduced projected ensemble (PE), constructed by performing projective measurements on the rest of the system and recording the outcomes. By focusing on the time evolution of fermionic Gaussian states in a tight-binding chain, we put forward a random ensemble constructed out of the local conservation laws, which we call deep GGE (dGGE). For infinite-temperature initial states, we show that the dGGE coincides with a universal Haar random ensemble on the manifold of Gaussian states. For both infinite and finite temperatures, we use a Monte Carlo approach to test numerically the predictions of the dGGE against the PE. We study in particular the $k$-moments of the state covariance matrix and the entanglement entropy, finding excellent agreement. Our work provides a first step towards a systematic characterization of projected ensembles beyond the case of chaotic systems and infinite temperatures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源