论文标题
Eagle模拟中静态和星形星系的基本平面的共同起源
A common origin for the Fundamental Plane of quiescent and star-forming galaxies in the EAGLE simulations
论文作者
论文摘要
我们使用Eagle宇宙学模拟对$ z = 0.1 $基本平面(FP)进行全面而系统的分析,星系尺寸,质量和速度分散之间的紧密关系。我们首先测量有效半径内的总质量和速度分散体(包括随机运动和旋转运动),以表明模拟星系服从了一个非常接近病毒关系的总质量FP($ <10 \%$偏差),表明非词性的影响很弱。相反,当我们使用恒星质量时,我们发现与病毒平面有很大的偏差,这是由暗物质含量变化驱动的。暗物质分数是大小和恒星质量的平滑函数,从而设置了恒星质量FP的系数,而不会实质上增加散射。因此,恒星形成和静态星系都遵守相同的FP,散射率同样低(0.02 DEX)。我们采用具有可变恒星初始质量函数(IMF)的模拟,以表明IMF变化对此FP具有适度的附加效果。此外,当我们使用亮度加权对大小的模拟观察和空间整合的速度分散体时,推断的FP仅略有变化。然而,由于速度分散体的光度加权和视线投影以及半光半径的测量不确定性,散射显着增加。重要的是,我们发现模拟的FP和观测值之间存在显着差异,这可能反映了恒星质量分布的系统差异。因此,我们建议恒星质量FP为宇宙学模拟提供了一个简单的测试,需要对模拟数据的最小后处理。
We use the EAGLE cosmological simulations to perform a comprehensive and systematic analysis of the $z=0.1$ Fundamental Plane (FP), the tight relation between galaxy size, mass and velocity dispersion. We first measure the total mass and velocity dispersion (including both random and rotational motions) within the effective radius to show that simulated galaxies obey a total mass FP that is very close to the virial relation ($<10\%$ deviation), indicating that the effects of non-homology are weak. When we instead use the stellar mass, we find a strong deviation from the virial plane, which is driven by variations in the dark matter content. The dark matter fraction is a smooth function of the size and stellar mass, and thereby sets the coefficients of the stellar mass FP without substantially increasing the scatter. Hence, both star-forming and quiescent galaxies obey the same FP, with equally low scatter (0.02 dex). We employ simulations with a variable stellar initial mass function (IMF) to show that IMF variations have a modest additional effect on this FP. Moreover, when we use luminosity-weighted mock observations of the size and spatially-integrated velocity dispersion, the inferred FP changes only slightly. However, the scatter increases significantly, due to the luminosity-weighting and line-of-sight projection of the velocity dispersions, and measurement uncertainties on the half-light radii. Importantly, we find significant differences between the simulated FP and observations, which likely reflects a systematic difference in the stellar mass distributions. Therefore, we suggest the stellar mass FP offers a simple test for cosmological simulations, requiring minimal post-processing of simulation data.