论文标题
在有界域中阻尼的可压缩欧拉方程的亚音间周期溶液
Subsonic time-periodic solution to compressible Euler equations with damping in a bounded domain
论文作者
论文摘要
在本文中,我们考虑具有线性阻尼$β(t,x)ρu$的一维等质压缩欧拉方程,可用于描述通过多孔介质的可压缩流的过程。〜时间周期性平滑解决方案,在初始数据的小扰动下是稳定的。此外,时间周期溶液具有较高的规律性和稳定性提供了更高的规则边界条件。
In this paper, we consider the one-dimensional isentropic compressible Euler equations with linear damping $β(t,x)ρu$ in a bounded domain, which can be used to describe the process of compressible flows through a porous medium.~And the model is imposed a dissipative subsonic time-periodic boundary condition.~Our main results reveal that the time-periodic boundary can trigger a unique subsonic time-periodic smooth solution which is stable under small perturbations on initial data. Moreover, the time-periodic solution possesses higher regularity and stability provided a higher regular boundary condition.