论文标题

多媒体异常检测中的概念漂移挑战:带有面部数据集的案例研究

Concept Drift Challenge in Multimedia Anomaly Detection: A Case Study with Facial Datasets

论文作者

Kumari, Pratibha, Choudhary, Priyankar, Atrey, Pradeep K., Saini, Mukesh

论文摘要

多媒体数据集中的异常检测是一个广泛研究的区域。然而,大多数异常检测框架对数据中的概念漂移挑战被忽略或处理不佳。最先进的方法假定培训和部署时间的数据分配将相同。但是,由于各种现实生活中的环境因素,数据可能会在其分布中遇到漂移,或者在未来后期可能会从一个班级漂移到另一个类。因此,一次经过训练的模型可能无法充分执行。在本文中,我们系统地研究了概念漂移对各种检测模型的影响,并提出了基于多媒体数据中基于修改的基于自适应的高斯混合模型(AGMM)框架,以实现异常检测。与基线AGMM相反,提议的AGMM延伸时间会记住过去更长的时间,以便更好地处理漂移。广泛的实验分析表明,与基线AGMM相比,提出的模型可以更好地处理数据的漂移。此外,为了促进与提议的框架进行研究和比较,我们贡献了三个构成面孔作为样本的多媒体数据集。个体的面部样本对应于十年以上的年龄差异,以纳入更长的时间环境。

Anomaly detection in multimedia datasets is a widely studied area. Yet, the concept drift challenge in data has been ignored or poorly handled by the majority of the anomaly detection frameworks. The state-of-the-art approaches assume that the data distribution at training and deployment time will be the same. However, due to various real-life environmental factors, the data may encounter drift in its distribution or can drift from one class to another in the late future. Thus, a one-time trained model might not perform adequately. In this paper, we systematically investigate the effect of concept drift on various detection models and propose a modified Adaptive Gaussian Mixture Model (AGMM) based framework for anomaly detection in multimedia data. In contrast to the baseline AGMM, the proposed extension of AGMM remembers the past for a longer period in order to handle the drift better. Extensive experimental analysis shows that the proposed model better handles the drift in data as compared with the baseline AGMM. Further, to facilitate research and comparison with the proposed framework, we contribute three multimedia datasets constituting faces as samples. The face samples of individuals correspond to the age difference of more than ten years to incorporate a longer temporal context.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源