论文标题
贝叶斯动态网络建模:心血管疾病中代谢关联的应用
Bayesian Dynamic Network Modelling: an application to metabolic associations in cardiovascular diseases
论文作者
论文摘要
我们提出了一种新的方法来估计多个图形模型,以分析不同患者组的一组代谢产物之间的缔合时间模式。我们激励的应用是Southall and Brent Revised(Saber)研究,这是在英国进行的三民族队列研究。我们有兴趣确定代谢物水平和关联的潜在种族差异以及它们随着时间的流逝而进化,以便更好地了解各种种族的心脏代谢疾病的不同风险。在贝叶斯框架内,我们采用了一种节点回归方法来推断图形的结构,跨越时间以及跨种族借用信息。感兴趣的响应变量是在两个时间点和两个族裔,欧洲人和南部人中测量的代谢物水平。我们使用节点回归来估计代谢产物的高维精度矩阵,从而在回归系数上通过动态马蹄形施加稀疏性,从而有利于稀疏图。我们提供了使用软件Stan拟合建议模型的代码,该软件使用Hamiltonian Monte Carlo采样执行后推理,以及对Block Gibbs采样方案的详细描述。
We propose a novel approach to the estimation of multiple Graphical Models to analyse temporal patterns of association among a set of metabolites over different groups of patients. Our motivating application is the Southall And Brent REvisited (SABRE) study, a tri-ethnic cohort study conducted in the UK. We are interested in identifying potential ethnic differences in metabolite levels and associations as well as their evolution over time, with the aim of gaining a better understanding of different risk of cardio-metabolic disorders across ethnicities. Within a Bayesian framework, we employ a nodewise regression approach to infer the structure of the graphs, borrowing information across time as well as across ethnicities. The response variables of interest are metabolite levels measured at two time points and for two ethnic groups, Europeans and South-Asians. We use nodewise regression to estimate the high-dimensional precision matrices of the metabolites, imposing sparsity on the regression coefficients through the dynamic horseshoe prior, thus favouring sparser graphs. We provide the code to fit the proposed model using the software Stan, which performs posterior inference using Hamiltonian Monte Carlo sampling, as well as a detailed description of a block Gibbs sampling scheme.