论文标题
近视机器人在有限网格上的最大独立设置形成
Maximum Independent Set Formation on a Finite Grid by Myopic Robots
论文作者
论文摘要
这项工作涉及自动机器人有限的矩形网格中的最大独立集($ \ MATHCAL {MIS} $)编队问题。假设我们得到了一组相同的机器人,其中每个机器人都放在有限的矩形网格$ \ MATHCAL {G} $的节点上,因此没有两个机器人在同一节点上。 $ \ MATHCAL {MIS} $编队问题要求设计算法,执行每个机器人将自动移动并以节点终止,以便在有限的时间后,机器人占据的一组节点是$ \ natercal {g} $的最大独立集。我们假设机器人是匿名和沉默的,并且它们执行相同的分布式算法。 以前解决此问题的工作使用了一个或几个门节点,机器人通过该节点在网格或图中输入并占据所需的节点。在这项工作中,我们提出了一种确定性算法,该算法在更广泛的场景中求解$ \ Mathcal {mis} $形成问题,即,当形成$ \ Mathcal {mis} $的必需机器人总数被任意放置在网格上。所提出的算法在半同步调度程序下使用只有2个HOP可见性范围和仅3种颜色的机器人工作。
This work deals with the Maximum Independent Set ($\mathcal{MIS}$) formation problem in a finite rectangular grid by autonomous robots. Suppose we are given a set of identical robots, where each robot is placed on a node of a finite rectangular grid $\mathcal{G}$ such that no two robots are on the same node. The $\mathcal{MIS}$ formation problem asks to design an algorithm, executing which each robot will move autonomously and terminate at a node such that after a finite time the set of nodes occupied by the robots is a maximum independent set of $\mathcal{G}$. We assume that robots are anonymous and silent, and they execute the same distributed algorithm. Previous works solving this problem used one or several door nodes through which the robots enter inside the grid or the graph one by one and occupy required nodes. In this work, we propose a deterministic algorithm that solves the $\mathcal{MIS}$ formation problem in a more generalized scenario, i.e., when the total number of required robots to form an $\mathcal{MIS}$ are arbitrarily placed on the grid. The proposed algorithm works under a semi-synchronous scheduler using robots with only 2 hop visibility range and only 3 colors.