论文标题
有效的视频浮雕在运动幅度的指导下
Efficient Video Deblurring Guided by Motion Magnitude
论文作者
论文摘要
由于空间和时间上变化的模糊,视频Deblurring是一个高度不足的问题。视频脱毛的直观方法包括两个步骤:a)检测当前框架中的模糊区域; b)利用来自相邻帧中清晰区域的信息,以使当前框架脱毛。为了实现这一过程,我们的想法是检测每个帧的像素模糊水平,并将其与视频Deblurring结合使用。为此,我们提出了一个新颖的框架,该框架利用了先验运动级(MMP)作为有效的深层视频脱张的指南。具体而言,由于在曝光时间内沿其轨迹的像素运动与运动模糊的水平呈正相关,因此我们首先使用来自高频尖锐锋利帧的光流的平均幅度来生成合成模糊框架及其相应的像素运动幅度映射。然后,我们构建一个数据集,包括模糊框架和MMP对。然后,由紧凑的CNN通过回归来学习MMP。 MMP包括空间和时间模糊级别信息,可以将其进一步集成到视频脱毛的有效复发性神经网络(RNN)中。我们进行密集的实验,以验证公共数据集中提出的方法的有效性。
Video deblurring is a highly under-constrained problem due to the spatially and temporally varying blur. An intuitive approach for video deblurring includes two steps: a) detecting the blurry region in the current frame; b) utilizing the information from clear regions in adjacent frames for current frame deblurring. To realize this process, our idea is to detect the pixel-wise blur level of each frame and combine it with video deblurring. To this end, we propose a novel framework that utilizes the motion magnitude prior (MMP) as guidance for efficient deep video deblurring. Specifically, as the pixel movement along its trajectory during the exposure time is positively correlated to the level of motion blur, we first use the average magnitude of optical flow from the high-frequency sharp frames to generate the synthetic blurry frames and their corresponding pixel-wise motion magnitude maps. We then build a dataset including the blurry frame and MMP pairs. The MMP is then learned by a compact CNN by regression. The MMP consists of both spatial and temporal blur level information, which can be further integrated into an efficient recurrent neural network (RNN) for video deblurring. We conduct intensive experiments to validate the effectiveness of the proposed methods on the public datasets.