论文标题

在参数不确定性下具有路径依赖性及其在财务中的应用

Affine models with path-dependence under parameter uncertainty and their application in finance

论文作者

Geuchen, Benedikt, Oberpriller, Katharina, Schmidt, Thorsten

论文摘要

在这项工作中,我们考虑了骑士不确定性范式(所谓的非线性广义仿射模型)下的一维广义仿射过程。这扩展了Fadina等人的先前结果。 (2019)和Lütkebohmert等。 (2022)。特别是,我们研究了允许收益依靠路径的情况,就像障碍选项或亚洲选项的情况一样。为此,我们开发了通过依靠功能性ITOCULUS来实现的值函数的路径依赖性设置。我们建立了动态​​编程原理,然后导致一个功能性的非线性kolmogorov方程,描述了值函数的演变。对于亚洲选项,可以追溯到PDE方法,但对于更复杂的收益(例如障碍选项),这是不可能的。为了以有效的方式处理此类收益,我们近似具有深层神经网络的功能衍生物,并表明参数不确定性下的数值估值是高度可牵引的。最后,我们考虑在信用和交易对手风险的结构建模中的应用,其中参数不确定性和路径依赖性至关重要,此处提出的方法为该领域有效的数值方法打开了大门。

In this work we consider one-dimensional generalized affine processes under the paradigm of Knightian uncertainty (so-called non-linear generalized affine models). This extends and generalizes previous results in Fadina et al. (2019) and Lütkebohmert et al. (2022). In particular, we study the case when the payoff is allowed to depend on the path, like it is the case for barrier options or Asian options. To this end, we develop the path-dependent setting for the value function which we do by relying on functional Itô calculus. We establish a dynamic programming principle which then leads to a functional non-linear Kolmogorov equation describing the evolution of the value function. While for Asian options, the valuation can be traced back to PDE methods, this is no longer possible for more complicated payoffs like barrier options. To handle such payoffs in an efficient manner, we approximate the functional derivatives with deep neural networks and show that the numerical valuation under parameter uncertainty is highly tractable. Finally, we consider the application to structural modelling of credit and counterparty risk, where both parameter uncertainty and path-dependence are crucial and the approach proposed here opens the door to efficient numerical methods in this field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源