论文标题

规则限制的快速正弦变换

Regularity-Constrained Fast Sine Transforms

论文作者

Suzuki, Taizo, Kyochi, Seisuke, Tanaka, Yuichi

论文摘要

这封信提出了常规性约束的离散正弦变换(R-DST)的快速实施。原始的DST \ TextIt {Leaks}信号的最低频率(DC:Direct Current)组件分为高频(AC:交流电流)子带。在许多应用程序中,尤其是图像处理不足,因为自然图像中的大多数频率分量集中在DC子带中。过滤器库不将DC组件泄漏到AC子带中的特征称为\ textit {juroliality}。尽管提出了R-DST,但由于其内部算法的奇异值分解(SVD),因此没有快速实施。相比之下,提出的规律性约束的快速变换(R-fst)仅通过附加规则约束矩阵作为原始DST的后处理而获得。 When the DST size is $M\times M$ ($M=2^\ell$, $\ell\in\mathbb{N}_{\geq 1}$), the regularity constraint matrix is constructed from only $M/2-1$ rotation matrices with the angles derived from the output of the DST for the constant-valued signal (i.e., the DC signal).由于它不需要SVD,因此计算比R-DST更简单,更快,同时保持其所有有益属性。图像处理示例表明,R-FST具有良好的频率选择性,而没有直流泄漏,并且编码增益高于原始DST。同样,在$ M = 8 $的情况下,R-Fst以$ 512 \ times 512 $信号的2-D转换为$ 0.126 $秒,而与R-DST相比,由于额外的操作较少,因此节省了$ 512 $的信号。

This letter proposes a fast implementation of the regularity-constrained discrete sine transform (R-DST). The original DST \textit{leaks} the lowest frequency (DC: direct current) components of signals into high frequency (AC: alternating current) subbands. This property is not desired in many applications, particularly image processing, since most of the frequency components in natural images concentrate in DC subband. The characteristic of filter banks whereby they do not leak DC components into the AC subbands is called \textit{regularity}. While an R-DST has been proposed, it has no fast implementation because of the singular value decomposition (SVD) in its internal algorithm. In contrast, the proposed regularity-constrained fast sine transform (R-FST) is obtained by just appending a regularity constraint matrix as a postprocessing of the original DST. When the DST size is $M\times M$ ($M=2^\ell$, $\ell\in\mathbb{N}_{\geq 1}$), the regularity constraint matrix is constructed from only $M/2-1$ rotation matrices with the angles derived from the output of the DST for the constant-valued signal (i.e., the DC signal). Since it does not require SVD, the computation is simpler and faster than the R-DST while keeping all of its beneficial properties. An image processing example shows that the R-FST has fine frequency selectivity with no DC leakage and higher coding gain than the original DST. Also, in the case of $M=8$, the R-FST saved approximately $0.126$ seconds in a 2-D transformation of $512\times 512$ signals compared with the R-DST because of fewer extra operations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源