论文标题

表征量子狂犬模型的超级阶段

Characterizing Superradiant Phase of the Quantum Rabi Model

论文作者

Yang, Yun-Tong, Luo, Hong-Gang

论文摘要

最近,在实验中验证了量子兔模型(QRM)中首先在理论上预测的超级相变。这进一步刺激了对相变过程的兴趣和超级阶段的性质,因为QRM在描述光与物质的相互作用中的基本作用,更重要的是,尽管它具有简单性,但QRM仍具有丰富的物理学。在这里,我们提出了一个由两个连续的对角线化组成的方案,以准确地获得QRM的地面和激发状态波函数,以从弱到深度耦合,范围为完全参数。因此,人们能够看到相变的方式以及光子在超级阶段的Fock空间中的填充。我们通过在随机矩阵理论中借用分布概念来表征光子种群,并发现一旦发生相变发生并进一步展示了高斯单位集合的统计数据,随着耦合强度的提高,光子种群遵循泊松式的分布。更有趣的是,激发状态中的光子甚至像高斯正交合奏的统计数据一样行为。我们的结果不仅加深了对上级相变的理解,而且还提供了对QRM和相关模型超级阶段的性质的见解。

Recently, a superradiant phase transition first predicted theoretically in the quantum Rabi model (QRM) has been verified experimentally. This further stimulates the interest in the study of the process of phase transition and the nature of the superradiant phase since the fundamental role of the QRM in describing the interaction of light and matter, and more importantly, the QRM contains rich physics deserving further exploration despite its simplicity. Here we propose a scheme consisting of two successive diagonalization to accurately obtain the ground-state and excited states wavefunctions of the QRM in full parameter regime ranging from weak to deep-strong couplings. Thus one is able to see how the phase transition happens and how the photons populate in Fock space of the superradiant phase. We characterize the photon populations by borrowing the distribution concept in random matrix theory and find that the photon population follows a Poissonian-like distribution once the phase transition happens and further exhibits the statistics of Gaussian unitary ensemble as increasing coupling strength. More interestingly, the photons in the excited states behave even like the statistics of Gaussian orthogonal ensemble. Our results not only deepen understanding on the superradiant phase transition but also provide an insight on the nature of the superradiant phase of the QRM and related models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源