论文标题
感官反应系统的设备CPU计划
On-Device CPU Scheduling for Sense-React Systems
论文作者
论文摘要
感官反应系统(例如机器人技术和AR/VR)必须采取高度响应的实时操作,这是由涉及感应,感知,计划和反应任务的复杂决策驱动的。这些任务必须安排在资源约束的设备上,以便满足应用程序的性能目标和要求。这是一个困难的调度问题,需要处理多个调度维度以及资源使用和可用性的变化。实际上,系统设计师手动调整其特定硬件和应用参数,从而导致泛化不良并增加了开发负担。在这项工作中,我们强调了在有感觉反应系统中在运行时安排CPU资源的新兴需求。我们研究三个规范应用程序(面部跟踪,机器人导航和VR),以首先了解此类系统的关键调度要求。有了这种理解,我们开发了一个调度框架,即Catan,该框架动态调度了在应用程序的不同组件上计算资源,以满足指定的应用程序要求。通过在广泛使用的机器人框架(ROS)和开源AR/VR平台上实现的原型实验,我们展示了系统调度对达到三个应用程序的性能目标的影响,Catan如何能够比手工调整配置获得更好的应用程序性能以及如何动态地适应运行时变化。
Sense-react systems (e.g. robotics and AR/VR) have to take highly responsive real-time actions, driven by complex decisions involving a pipeline of sensing, perception, planning, and reaction tasks. These tasks must be scheduled on resource-constrained devices such that the performance goals and the requirements of the application are met. This is a difficult scheduling problem that requires handling multiple scheduling dimensions, and variations in resource usage and availability. In practice, system designers manually tune parameters for their specific hardware and application, which results in poor generalization and increases the development burden. In this work, we highlight the emerging need for scheduling CPU resources at runtime in sense-react systems. We study three canonical applications (face tracking, robot navigation, and VR) to first understand the key scheduling requirements for such systems. Armed with this understanding, we develop a scheduling framework, Catan, that dynamically schedules compute resources across different components of an app so as to meet the specified application requirements. Through experiments with a prototype implemented on a widely-used robotics framework (ROS) and an open-source AR/VR platform, we show the impact of system scheduling on meeting the performance goals for the three applications, how Catan is able to achieve better application performance than hand-tuned configurations, and how it dynamically adapts to runtime variations.