论文标题

使用降低密度矩阵的凸几何形状对量子相变的量子模拟

Quantum Simulation of Quantum Phase Transitions Using the Convex Geometry of Reduced Density Matrices

论文作者

Warren, Samuel, Sager-Smith, LeeAnn M., Mazziotti, David A.

论文摘要

许多粒子量子系统在绝对零温度下的不同阶段之间的过渡,称为量子相变,需要对粒子相关性进行严格的处理。在这项工作中,我们提出了一种通用的量子计算方法,用于利用降低密度矩阵的几何结构。虽然量子相变的典型方法在顺序参数中检查了不连续性,但相变的起源(它们的顺序参数和对称性破坏)可以从几何学上理解,以两种粒子降低的密度矩阵(2-rdms)。 2-RDMS的凸组集合提供了量子系统的全面图,包括其不同的阶段以及连接这些阶段的过渡。因为即使量子系统密切相关,也可以以非指数成本在量子计算机上计算2-RDMS,因此,它们非常适合用于量子相变的量子计算方法。我们计算IBM超导量量子处理器上的Lipkin-Meshkov-Glick旋转模型的2-RDMS凸组。即使由于设备噪声而限于几个粒子模型,但与经典可解决的1000个粒子模型的比较表明,有限粒子量子解决方案捕获了相变的关键特征,包括强相关和对称性破坏。

Transitions of many-particle quantum systems between distinct phases at absolute-zero temperature, known as quantum phase transitions, require an exacting treatment of particle correlations. In this work, we present a general quantum-computing approach to quantum phase transitions that exploits the geometric structure of reduced density matrices. While typical approaches to quantum phase transitions examine discontinuities in the order parameters, the origin of phase transitions -- their order parameters and symmetry breaking -- can be understood geometrically in terms of the set of two-particle reduced density matrices (2-RDMs). The convex set of 2-RDMs provides a comprehensive map of the quantum system including its distinct phases as well as the transitions connecting these phases. Because 2-RDMs can potentially be computed on quantum computers at non-exponential cost, even when the quantum system is strongly correlated, they are ideally suited for a quantum-computing approach to quantum phase transitions. We compute the convex set of 2-RDMs for a Lipkin-Meshkov-Glick spin model on IBM superconducting-qubit quantum processors. Even though computations are limited to few-particle models due to device noise, comparisons with a classically solvable 1000-particle model reveal that the finite-particle quantum solutions capture the key features of the phase transitions including the strong correlation and the symmetry breaking.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源