论文标题
我们可以从“一分钟移动应用程序使用”中提取有关用户的信息
Information We Can Extract About a User From 'One Minute Mobile Application Usage'
论文作者
论文摘要
了解人类行为是一项重要的任务,并且在许多领域(例如针对性的广告,健康分析,安全和娱乐等)都有应用。为此,设计活动识别系统(AR)很重要。但是,由于每个人都可以具有不同的行为,因此理解和分析共同模式成为一项挑战的任务。由于现代世界中的每个人都很容易获得智能手机,因此使用它们来跟踪人类活动变得可能是可能的。在本文中,我们通过构建Android移动应用程序的Android智能手机的加速度计,磁力计和陀螺仪传感器提取了不同的人类活动。使用不同的社交媒体应用程序,例如Facebook,Instagram,WhatsApp和Twitter,我们提取了原始传感器值以及$ 29 $主题的属性及其属性(类标签),例如年龄,性别,左/右/双手应用程序使用。我们从原始信号中提取功能,并使用它们使用不同的机器学习(ML)算法进行分类。使用统计分析,我们显示了不同特征对类标签预测的重要性。最后,我们在数据上使用训练有素的ML模型从UCI存储库中众所周知的活动识别数据中提取未知功能,该功能突出了使用ML模型的隐私漏洞的潜力。这种安全分析可以帮助研究人员将来采取适当的步骤来保护人类受试者的隐私。
Understanding human behavior is an important task and has applications in many domains such as targeted advertisement, health analytics, security, and entertainment, etc. For this purpose, designing a system for activity recognition (AR) is important. However, since every human can have different behaviors, understanding and analyzing common patterns become a challenging task. Since smartphones are easily available to every human being in the modern world, using them to track the human activities becomes possible. In this paper, we extracted different human activities using accelerometer, magnetometer, and gyroscope sensors of android smartphones by building an android mobile applications. Using different social media applications, such as Facebook, Instagram, Whatsapp, and Twitter, we extracted the raw sensor values along with the attributes of $29$ subjects along with their attributes (class labels) such as age, gender, and left/right/both hands application usage. We extract features from the raw signals and use them to perform classification using different machine learning (ML) algorithms. Using statistical analysis, we show the importance of different features towards the prediction of class labels. In the end, we use the trained ML model on our data to extract unknown features from a well known activity recognition data from UCI repository, which highlights the potential of privacy breach using ML models. This security analysis could help researchers in future to take appropriate steps to preserve the privacy of human subjects.