论文标题

量化基质产品状态的非稳定器

Quantifying nonstabilizerness of matrix product states

论文作者

Haug, Tobias, Piroli, Lorenzo

论文摘要

非稳定器(也称为魔术)量化了准备量子状态所需的非克利福德操作的数量。由于典型的措施涉及最小化程序或量子数量$ n $数量的计算成本指数,因此众所周知,对于多体状态而言,很难表征。在这项工作中,我们表明,通过最近引入的稳定器Rényi熵(SRE)量化的非稳定器可以有效地计算出矩阵乘积状态(MPSS)。具体而言,给定债券维数$χ$和整数Rényi索引$ n> 1 $的MPS,我们证明可以根据具有债券维度$χ^{2n} $的MPS的标准表示SRE。对于翻译不变的状态,这使我们可以从单个张量(传输矩阵)中提取它,而对于通用MPS,该构造产生了$ n $的计算成本线性和$χ$的多项式。我们利用这一观察结果来重新研究量子链中基态非稳定器的研究,从而为大型系统大小提供准确的数值结果。我们分析了SRE接近临界点,并研究了其对局部计算基础的依赖性,这表明它在临界点并非最大。

Nonstabilizerness, also known as magic, quantifies the number of non-Clifford operations needed in order to prepare a quantum state. As typical measures either involve minimization procedures or a computational cost exponential in the number of qubits $N$, it is notoriously hard to characterize for many-body states. In this work, we show that nonstabilizerness, as quantified by the recently introduced Stabilizer Rényi Entropies (SREs), can be computed efficiently for matrix product states (MPSs). Specifically, given an MPS of bond dimension $χ$ and integer Rényi index $n>1$, we show that the SRE can be expressed in terms of the norm of an MPS with bond dimension $χ^{2n}$. For translation-invariant states, this allows us to extract it from a single tensor, the transfer matrix, while for generic MPSs this construction yields a computational cost linear in $N$ and polynomial in $χ$. We exploit this observation to revisit the study of ground-state nonstabilizerness in the quantum Ising chain, providing accurate numerical results up to large system sizes. We analyze the SRE near criticality and investigate its dependence on the local computational basis, showing that it is in general not maximal at the critical point.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源