论文标题
使用安全的多方计算进行探索性空间数据分析的空间数据共享
Spatial data sharing with secure multi-party computation for exploratory spatial data analysis
论文作者
论文摘要
空间数据共享在开放数据研究和促进政府机构透明度方面起着重要作用。但是,宝贵的空间数据,例如高精度地理信息和个人交通记录,无法公开,因为它们可能会遇到泄漏风险,例如入侵,盗窃和未经授权的专有信息。当具有机密数据的参与者相互不信任但想使用其他数据集进行计算时,最常见的解决方案是将其原始数据提供给受信任的第三方。但是,受信任的第三方经常冒着攻击并泄漏数据的风险。为了维持数据可控性,大多数公司和组织都拒绝共享其数据。在这项研究中,我们介绍了安全的多方计算以解决空间数据共享以解决共享问题。此外,我们描述了两个探索性空间数据分析的协议的设计和实施:全球Moran的I和本地Moran的I.此外,我们构建了一个系统来展示过程实现和结果可视化。将我们的系统与现有数据共享方案进行比较,我们的系统可以确定正确的结果,而不会在空间数据共享过程中产生泄漏风险。
Spatial data sharing plays a significant role in opening data research and promoting government agency transparency. However, valuable spatial data, like high-precision geographic information and personal traffic records, cannot be made public because they may incur leakage risks such as intrusion, theft, and the unauthorised sale of proprietary information. When participants with confidential data distrust each other but want to use the other datasets for calculations, the most common solution is to provide their original data to a trusted third party. However, the trusted third party frequently risks being attacked and having the data leaked. To maintain data controllability, most companies and organisations refuse to share their data. In this study, we introduce secure multi-party computation to spatial data sharing to address the sharing problem. Additionally, we describe the design and implementation of the protocols of two exploratory spatial data analyses: global Moran's I and local Moran's I. Furthermore, we build a system to demonstrate process realisation and results visualisation. Comparing our system with existing data-sharing schemes, our system Identifies the correct result without incurring leaking risks during spatial data sharing.