论文标题

有效的高分辨率深度学习:一项调查

Efficient High-Resolution Deep Learning: A Survey

论文作者

Bakhtiarnia, Arian, Zhang, Qi, Iosifidis, Alexandros

论文摘要

现代设备(例如智能手机,卫星和医疗设备)的相机能够捕获非常高分辨率的图像和视频。这种高分辨率数据通常需要通过深度学习模型来处理癌症检测,自动化道路导航,天气预测,监视,优化农业过程和许多其他应用。使用高分辨率图像和视频作为深度学习模型的直接输入,由于其参数数量大,计算成本,推理延迟和GPU内存消耗而造成了许多挑战。简单的方法,例如将图像调整为较低分辨率的方法在文献中很常见,但是它们通常会显着降低准确性。文献中的几项作品提出了更好的替代方案,以应对高分辨率数据的挑战并提高准确性和速度,同时遵守硬件限制和时间限制。这项调查描述了这种高效的高分辨率深度学习方法,总结了高分辨率深度学习的现实应用程序,并提供了有关可用高分辨率数据集的全面信息。

Cameras in modern devices such as smartphones, satellites and medical equipment are capable of capturing very high resolution images and videos. Such high-resolution data often need to be processed by deep learning models for cancer detection, automated road navigation, weather prediction, surveillance, optimizing agricultural processes and many other applications. Using high-resolution images and videos as direct inputs for deep learning models creates many challenges due to their high number of parameters, computation cost, inference latency and GPU memory consumption. Simple approaches such as resizing the images to a lower resolution are common in the literature, however, they typically significantly decrease accuracy. Several works in the literature propose better alternatives in order to deal with the challenges of high-resolution data and improve accuracy and speed while complying with hardware limitations and time restrictions. This survey describes such efficient high-resolution deep learning methods, summarizes real-world applications of high-resolution deep learning, and provides comprehensive information about available high-resolution datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源