论文标题

量子开关的实践计算优势,在普遍的承诺问题家族中

Practical computational advantage from the quantum switch on a generalized family of promise problems

论文作者

Escandón-Monardes, Jorge, Delgado, Aldo, Walborn, Stephen P.

论文摘要

量子开关是量子计算原始的,它通过在订单叠加中应用操作来提供计算优势。特别是,它可以减少解决承诺问题所需的门查询数量,而目标是区分一组统一门的一组属性。在这项工作中,我们使用复杂的Hadamard矩阵引入了更一般的承诺问题,这些问题减少了已知的傅立叶和Hadamard承诺问题作为限制案例。我们的概括松开了对矩阵大小,门数和量子系统尺寸的限制,从而提供了更多的参数。此外,这得出的结论是,连续变量系统对于实施最普遍的承诺问题是必要的。在有限维度的情况下,矩阵家族仅限于所谓的Butson-Hadamard类型,并且矩阵的复杂性作为约束。我们介绍了``每个门的查询''参数,并使用它来证明量子开关为连续和离散案例提供了计算优势。我们的结果应使用量子开关激发承诺问题的实现,因此可以更自由地选择参数和实验设置。

The quantum switch is a quantum computational primitive that provides computational advantage by applying operations in a superposition of orders. In particular, it can reduce the number of gate queries required for solving promise problems where the goal is to discriminate between a set of properties of a given set of unitary gates. In this work, we use Complex Hadamard matrices to introduce more general promise problems, which reduce to the known Fourier and Hadamard promise problems as limiting cases. Our generalization loosens the restrictions on the size of the matrices, number of gates and dimension of the quantum systems, providing more parameters to explore. In addition, it leads to the conclusion that a continuous variable system is necessary to implement the most general promise problem. In the finite dimensional case, the family of matrices is restricted to the so-called Butson-Hadamard type, and the complexity of the matrix enters as a constraint. We introduce the ``query per gate'' parameter and use it to prove that the quantum switch provides computational advantage for both the continuous and discrete cases. Our results should inspire implementations of promise problems using the quantum switch where parameters and therefore experimental setups can be chosen much more freely.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源