论文标题

大属的封闭双曲线表面的第二个特征值

On second eigenvalues of closed hyperbolic surfaces for large genus

论文作者

He, Yuxin, Wu, Yunhui

论文摘要

在本文中,我们研究了大属的封闭双曲线表面的第二个特征值。我们表明,对于每一个闭合的双曲表面$ x_g $的属$ g $ $(g \ geq 3)$,达到均匀的正常数乘积,第二个eigenvalue $λ_2(x_g)的$ x_g $大于$ x_g $大于$ \ frac { $ \ MATHCAL {L} _2(X_G)$;此外,这两个范围是$ g \ to \ infty $的最佳选择。这里$ \ MATHCAL {L} _2(X_G)$是简单的封闭多晶格的最短长度,将$ x_g $分隔为三个组件。 此外,我们还研究了数量$ \ frac {λ_2(x_g)} {\ mathcal {l} _2(x_g)} $,用于大属的随机双曲线表面。我们表明,作为$ g \ to \ infty $,通用双曲线$ x_g $具有$ \ frac {λ_2(x_g)} {\ Mathcal {l} _2 _2(x_g)} $均匀与$ \ frac {1} {1} {\ ln(g)} $均匀均匀。

In this article, we study the second eigenvalues of closed hyperbolic surfaces for large genus. We show that for every closed hyperbolic surface $X_g$ of genus $g$ $(g\geq 3)$, up to uniform positive constants multiplications, the second eigenvalue $λ_2(X_g)$ of $X_g$ is greater than $\frac{\mathcal{L}_2(X_g)}{g^2}$ and less than $\mathcal{L}_2(X_g)$; moreover these two bounds are optimal as $g\to \infty$. Here $\mathcal{L}_2(X_g)$ is the shortest length of simple closed multi-geodesics separating $X_g$ into three components. Furthermore, we also investigate the quantity $\frac{λ_2(X_g)}{\mathcal{L}_2(X_g)}$ for random hyperbolic surfaces of large genus. We show that as $g\to \infty$, a generic hyperbolic surface $X_g$ has $\frac{λ_2(X_g)}{\mathcal{L}_2(X_g)}$ uniformly comparable to $\frac{1}{\ln(g)}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源