论文标题
太阳大气中分形维度的界面区域成像光谱仪(IRIS)观测值
Interface Region Imaging Spectrograph (IRIS) Observations of the Fractal Dimension in the Solar Atmosphere
论文作者
论文摘要
虽然先前的工作探讨了在太阳能电晕发出的波长(例如在硬X射线,软X射线,柔软的X射线和EUV Wavelenghts中)中发出波长的耀斑和纳米体的分形和自组织的临界(SOC),但我们将重点放在脉冲中的脉冲现象上,并在光电球和过渡区域中观察到corptriS nife verfe croppition niverface contriefe conterive contriefe croption corptriS niversive croppition niversion niversive conterive contife notements interface condiety notements interface( $T_e \approx 10^4-10^6$ K. We find the following fractal dimensions (in increasing order): $D_A=1.21 \pm 0.07$ for photospheric granulation, $D_A=1.29 \pm 0.15$ for plages in the transition region, $D_A=1.54 \pm 0.16$ for sunspots in the transition region, $D_A=1.59 \pm 0.08 $的活性区域磁力图,$ d_a = 1.56 \ pm 0.08 $ euv纳米弹药,$ d_a = 1.76 \ pm 0.14 \ pm 0.14 $用于大型太阳能耀斑,最高$ d_a = 1.89 \ pm 0.05 \ pm 0.05 $,最大的X级X级燃料。我们用稀疏的curvi线性流动模式来解释分形维数($ 1.0 \ lapprox d_a \ lapprox 1.5 $)的低值,而分形维度的高值($ 1.5 \ lapprox d_a \ lapprox 2.0 $)指出了近距离填充太空的运输流程,例如chromosporation chromosponicersporation。太阳过渡区域中的现象似乎与SOC模型一致,基于它们的分形面积$ a $和(辐射)能量$ e $的大小分布,该$ e $ $ e $显示了$α_a^{obs} = 2.51 \ 2.51 \ pm 0.21 $的电源法斜率($α_A^$α_A^$} { 0.18 $(带有$α_e^{theo} = 1.80 $预测)。
While previous work explored the fractality and self-organized criticality (SOC) of flares and nanoflares in wavelengths emitted in the solar corona (such as in hard X-rays, soft X-rays, and EUV wavelenghts), we focus here on impulsive phenomena in the photosphere and transition region, as observed with the {\sl Interface Region Imaging Spectrograph (IRIS)} in the temperature range of $T_e \approx 10^4-10^6$ K. We find the following fractal dimensions (in increasing order): $D_A=1.21 \pm 0.07$ for photospheric granulation, $D_A=1.29 \pm 0.15$ for plages in the transition region, $D_A=1.54 \pm 0.16$ for sunspots in the transition region, $D_A=1.59 \pm 0.08$ for magnetograms in active regions, $D_A=1.56 \pm 0.08$ for EUV nanoflares, $D_A=1.76 \pm 0.14$ for large solar flares, and up to $D_A=1.89 \pm 0.05$ for the largest X-class flares. We interpret low values of the fractal dimension ($1.0 \lapprox D_A \lapprox 1.5$) in terms of sparse curvi-linear flow patterns, while high values of the fractal dimension ($1.5 \lapprox D_A \lapprox 2.0$) indicate near space-filling transport processes, such as chromospheric evaporation. Phenomena in the solar transition region appear to be consistent with SOC models, based on their size distributions of fractal areas $A$ and (radiative) energies $E$, which show power law slopes of $α_A^{obs}=2.51 \pm 0.21$ (with $α_A^{theo}=2.33$ predicted), and $α_E^{obs}=2.03 \pm 0.18$ (with $α_E^{theo}=1.80$ predicted).