论文标题
较高的重力和纠缠熵
Higher-Curvature Gravity and Entanglement Entropy
论文作者
论文摘要
在本文中,我们专注于爱因斯坦重力的高曲率扩展作为玩具模型,以使用仪表/重力二元性来探测保形场理论(CFT)的通用性能。在这种情况下,我们对广义准理论重视特别感兴趣,即,其静态球面对称解的运动方程最多最多是二阶。在这里,我们表征以给定曲率顺序和维度存在的这些理论的数量。此外,我们表明,通过现场重新定义与某些广义的准中性重力相关,任何有效的高曲率理论都可以连接。对于三个时空维度来说,情况很特殊,因为这种类型的理论具有微不足道的运动方程。但是,当物质字段添加到图片中时,运动方程将变得不平凡,在其他解决方案中描述了Bañados-teitelboim-Zanelli黑洞的多参数概括。 从CFT侧,纠缠熵是一个突出的数量,它编码有关场理论的重要信息,例如A型和B型在偶数范围内痕迹异常,并且在考虑球形纠缠区域时,理论的奇数和球体自由能。由于纠缠熵也包括分歧,因此我们采用Kounterms方案来提取物理相关的数量。在三维CFT对双重与爱因斯坦重力的情况下,我们表明有限部分是孤立的,可以用Willmore Energy编写,从而根据其特性提供了上限。我们将这一非凡的结果扩展到正在考虑的任意CFT中。此外,我们还展示了Kounterms方案的一般二次曲率重力的有效性,在偶数方面提取A型A型,B型B异常,并且在奇数中提取球体自由能。
In this thesis, we focus on higher-curvature extensions of Einstein gravity as toy models to probe universal properties of conformal field theory (CFT) using the gauge/gravity duality. In this context, we are particularly interested in generalized quasi-topological gravities, i.e., theories whose equations of motion for statically spherically symmetric solutions are of second order at most. Here, we characterize the number of these theories existing at a given curvature order and dimensions. Moreover, we show that any effective higher-curvature theory is connected, via field redefinitions to some generalized quasi-topological gravity. The situation is special for three spacetime dimensions, as theories of this type have trivial equations of motion. However, when matter fields are added into the picture, the equations of motion become non-trivial, describing, among other solutions, multiparametric generalizations of the Bañados-Teitelboim-Zanelli black hole. From the CFT side, entanglement entropy arises as a prominent quantity that encodes important information about the field theory, such as the type A and type B trace anomalies in even dimensions and the sphere free energy of the theory in odd dimensions when considering spherical entangling regions. As entanglement entropy also includes divergences, we employ the Kounterterms scheme to extract the physically relevant quantities. In the case of three-dimensional CFTs dual to Einstein gravity, we show that the finite part is isolated and can be written in terms of the Willmore energy, providing an upper bound based on its properties. We extend this remarkable result to arbitrary CFTs under consideration. Besides, we show the validity of the Kounterterms scheme for general quadratic curvature gravity, extracting the type A, type B anomalies of the theory in even dimensions and the sphere free energy in odd ones.