论文标题
量子力学增强的水流量,亚纳米碳纳米管中的水流
Quantum-mechanically enhanced water flow in sub-nanometer carbon nanotubes
论文作者
论文摘要
碳纳米管(CNT)中的水流与经典的流体力学相矛盾,渗透率可以超过2至5个数量级的无滑动Haagen-Poiseuille预测。半古典分子动力学解释了增强的流率,这归因于曲率依赖性晶格不匹配。然而,在$ \ sim $ nm大小的半径上,实验观察到的陡峭渗透性增强仍然知之甚少,这表明出现了令人困惑的非经典机制。在这里,我们从量子力学的角度来解决水上摩擦,从声子激发时的水能损失方面。我们发现,弱的水偶联和选择规则相结合,阻碍了水-CNT散射,从而为水超流提供了有效的保护,而与半经典理论的比较证明了摩擦的增加,可以超过两个以上的量子级。准摩擦的流向Sub-NM CNT的流动为微创的跨膜细胞注射,单水流体和有效的水过滤打开了新的途径。
Water-flow in carbon nanotubes (CNT's) starkly contradicts classical fluid mechanics, with permeabilities that can exceed no-slip Haagen-Poiseuille predictions by two to five orders of magnitude. Semi-classical molecular dynamics accounts for enhanced flow-rates, that are attributed to curvature-dependent lattice mismatch. However, the steeper permeability-enhancement observed experimentally at $\sim$nm-size radii remains poorly understood, and suggests emergence of puzzling non-classical mechanisms. Here we address water-CNT friction from a quantum-mechanical perspective, in terms of water-energy loss upon phonon excitation. We find that combined weak water-phonon coupling and selection rules hinder water-CNT scattering, providing effective protection to water superflow, whereas comparison with a semiclassical theory evidences a friction increase that can exceed the quantum-mechanical prediction by more than two orders of magnitude. Quasi-frictionless flow up to sub-nm CNT's opens new pathways towards minimally-invasive trans-membrane cellular injections, single-water fluidics and efficient water filtration.