论文标题
无滞后高迁移率石墨烯封装在钨二硫化物中
Hysteresis-Free High Mobility Graphene Encapsulated in Tungsten Disulfide
论文作者
论文摘要
高迁移率是各种电子设备应用的至关重要要求。高品质石墨烯设备的最先进的基于用石墨烯制成的异质结构,该石墨烯封装在$> 80 \,$ nm厚的硝化硼(HBN)中。不幸的是,在精确控制层的数量的同时扩展多层HBN仍然是一个难以捉摸的挑战,导致一种粗糙的材料无法增强石墨烯的迁移率。这导致了追求替代性的可扩展材料,可以同时用作石墨烯的底物和封装。 Tungsten二硫化物(WS $ _2 $)是一种过渡金属二分元,它通过化学蒸气沉积成功地以大型($ \ sim $ mm尺寸)多层生长。但是,通过$Δn\ sim $ 2.6 $ 2.6 $ 2.6 $ \ cdot $ 10 $ 10 $ 10 $^{11} $ cm $ cm $ cm^$^$ cm^$ cm^$^$ cm^$^$^$ cm^$^aS a a y hinder,电阻\ textit {vs {vs {封装。磁滞起源是由于WS $ _2 $中存在的硫空缺的电荷陷阱。在这项工作中,我们首次报告使用WS $ _2 $作为底物,并通过将WS $ _2 $与超酸一起化学处理WS $ _2 $来克服滞后问题,从而使这些职位空缺并从污染物中剥离表面。滞后大大降至噪声水平以下至少五倍(至$Δn<$ 5 $ \ cdot $ 10 $^{10} $ cm $ $^{ - 2} $),同时,ws $ _2 $ appapsulen的室内迁移率是$ _2 $ $ \ sim $ \ sim $ 6.2 $ 6.2 $ \ cdot $ 6.2 $ 6.2 $ \ cd cdot cm $^{ - 2} $ v $^{ - 1} $ s $^{ - 1} $在载体密度$ n $ $ \ sim $ 1 $ \ cdot $ 10 $ 10 $^{12} $ cm $^{ - 2} $。我们的结果将WS $ _2 $推向HBN的有效替代方案,作为高性能石墨烯设备的封装。
High mobility is a crucial requirement for a large variety of electronic device applications. The state-of-the-art for high quality graphene devices is based on heterostructures made with graphene encapsulated in $>80\,$nm-thick flakes of hexagonal boron nitride (hBN). Unfortunately, scaling up multilayer hBN while precisely controlling the number of layers remains an elusive challenge, resulting in a rough material unable to enhance the mobility of graphene. This leads to the pursuit of alternative, scalable materials, which can be simultaneously used as substrate and encapsulant for graphene. Tungsten disulfide (WS$_2$) is a transition metal dichalcogenide, which was successfully grown in large ($\sim$mm-size) multi-layers by chemical vapour deposition. However, the resistance \textit{vs} gate voltage characteristics when gating graphene through WS$_2$ exhibit largely hysteretic shifts of the charge neutrality point (CNP) in the order of $Δn\sim$2.6$\cdot$10$^{11}$ cm$^{-2}$, hindering the use of WS$_2$ as a reliable encapsulant. The hysteresis originates due to the charge traps from sulfur vacancies present in WS$_2$. In this work, we report for the first time the use of WS$_2$ as a substrate and the overcoming of hysteresis issues by chemically treating WS$_2$ with a super-acid, which passivates these vacancies and strips the surface from contaminants. The hysteresis is significantly reduced below the noise level by at least a factor five (to $Δn<$5$\cdot$10$^{10}$ cm$^{-2}$) and, simultaneously, the room-temperature mobility of WS$_2$-encapsulated graphene is as high as $\sim$6.2$\cdot$10$^{4}$ cm$^{-2}$V$^{-1}$s$^{-1}$ at a carrier density $n$ $\sim$1$\cdot$ 10$^{12}$ cm$^{-2}$. Our results promote WS$_2$ to a valid alternative to hBN as encapsulant for high-performance graphene devices.