论文标题

可变转换与小波和方差分析组合用于高维近似

Variable Transformations in combination with Wavelets and ANOVA for high-dimensional approximation

论文作者

Potts, Daniel, Weidensager, Laura

论文摘要

我们使用双曲线小波回归来快速重建高维函数,具有较低的尺寸可变相互作用。紧凑的周期性chui-wang小波用于圆环的张力双曲线。通过变量转换,我们能够将近似速率和快速算法从圆环转换为其他域。我们通过使用最小二乘法执行并分析散射数据近似,以实现平滑而任意的密度函数。由于小波的紧凑支撑,相应的系统矩阵稀疏,这导致了矩阵矢量乘法的显着加速度。对于非周期函数,我们提出了一种新的扩展方法。适当的扩展参数以及零件多项式钟波小波的适当选择可适当扩展功能。在每种情况下,我们都能以高概率绑定近似误差。此外,如果该函数的有效维度较低(即仅具有几个变量的相互作用),我们定性地确定变量相互作用并省略第二步中较低差异的ANOVA项,以减少近似误差。这使我们可以为近似值提出一个适应的模型。数值结果表明该方法的效率。

We use hyperbolic wavelet regression for the fast reconstruction of high-dimensional functions having only low dimensional variable interactions. Compactly supported periodic Chui-Wang wavelets are used for the tensorized hyperbolic wavelet basis on the torus. With a variable transformation we are able to transform the approximation rates and fast algorithms from the torus to other domains. We perform and analyze scattered-data approximation for smooth but arbitrary density functions by using a least squares method. The corresponding system matrix is sparse due to the compact support of the wavelets, which leads to a significant acceleration of the matrix vector multiplication. For non-periodic functions we propose a new extension method. A proper choice of the extension parameter together with the piece-wise polynomial Chui-Wang wavelets extends the functions appropriately. In every case we are able to bound the approximation error with high probability. Additionally, if the function has low effective dimension (i.e. only interactions of few variables), we qualitatively determine the variable interactions and omit ANOVA terms with low variance in a second step in order to decrease the approximation error. This allows us to suggest an adapted model for the approximation. Numerical results show the efficiency of the proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源