论文标题

实时量子路径积分的存在

Existence of real time quantum path integrals

论文作者

Feldbrugge, Job, Turok, Neil

论文摘要

许多有趣的物理理论具有分析经典的作用。我们展示了Feynman的路径积分如何用于此类理论,而没有灯芯旋转到虚构的时间。我们首先引入一类平滑调节器,这些调节器使干扰积分绝对收敛,从而明确。调节剂的分析性使我们能够使用Cauchy的定理将集成域变形到一组相关的,复杂的“ Thimbles”(或与经典鞍座相关联的相关的最陡峭的下降轮廓)。然后可以删除调节器以获得确切的非扰动表示。我们展示了为什么用于识别有限维振荡积分的通常的梯度流动方法,用于识别相关的马鞍和最陡峭的下降“ Thimbles”,在无限维度的情况下失败了。对于麻烦的高频模式,我们将其替换为我们称为“特征流”的方法,我们采用了该方法来识别无限二二维,复杂的“本本类”,而实时路径积分绝对收敛。然后,我们通过相应的Wiener度量来绑定高频模式上的路径积分。使用主导的收敛定理,我们推断相互作用的路径积分定义了一个很好的度量。尽管实时路径积分比其欧几里得对应物更复杂,但它在几个方面都优越。它似乎特别适合诸如量子重力之类的理论,那里的经典理论发达了,但欧几里得路径积分不存在。

Many interesting physical theories have analytic classical actions. We show how Feynman's path integral may be defined non-perturbatively, for such theories, without a Wick rotation to imaginary time. We start by introducing a class of smooth regulators which render interference integrals absolutely convergent and thus unambiguous. The analyticity of the regulators allows us to use Cauchy's theorem to deform the integration domain onto a set of relevant, complex "thimbles" (or generalized steepest descent contours) each associated with a classical saddle. The regulator can then be removed to obtain an exact, non-perturbative representation. We show why the usual method of gradient flow, used to identify relevant saddles and steepest descent "thimbles" for finite-dimensional oscillatory integrals, fails in the infinite-dimensional case. For the troublesome high frequency modes, we replace it with a method we call "eigenflow" which we employ to identify the infinite-dimensional, complex "eigenthimble" over which the real time path integral is absolutely convergent. We then bound the path integral over high frequency modes by the corresponding Wiener measure for a free particle. Using the dominated convergence theorem we infer that the interacting path integral defines a good measure. While the real time path integral is more intricate than its Euclidean counterpart, it is superior in several respects. It seems particularly well-suited to theories such as quantum gravity where the classical theory is well developed but the Euclidean path integral does not exist.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源